Pyrroloquinoline quinone-secreting probiotic Escherichia coli Nissle 1917 ameliorates ethanol-induced oxidative damage and hyperlipidemia in rats.

Alcohol Clin Exp Res

Molecular Microbial Biochemistry Laboratory, Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India.

Published: July 2014

Background: Chronic ethanol (EtOH) consumption is associated with oxidative tissue damage, decrease in antioxidant enzyme activities, and increase in hepatic and plasma lipids. This study investigates the effect of modified probiotic Escherichia coli Nissle 1917 (EcN) secreting pyrroloquinoline quinone (PQQ) against EtOH-induced metabolic disorder in rats.

Methods: Male Charles Foster rats were gavaged with EtOH (5 g/kg body weight [acute study] and 3 g/kg body weight per day for 10 weeks [chronic study]).

Results: Pretreatment of PQQ, vitamin C, and PQQ-secreting EcN prevented acute EtOH-induced oxidative damage in rats reflected by reduced lipid peroxidation in blood and liver and increased hepatic reduced glutathione. However, PQQ given externally was found to be most effective against acute EtOH toxicity. In the chronic study, rats treated with PQQ-secreting EcN showed remarkable reduction in oxidative tissue damage (liver, colon, blood, and kidney) with significant increase in antioxidant enzyme activities as compared to only EtOH-treated rats. Additionally, these rats had significantly lowered hepatic and plasma lipid levels with concomitant reduction in mRNA expression of fatty acid synthase (0.5-fold) and increase in mRNA expression of acyl coenzyme A oxidase (2.4-fold) in hepatic tissue. Antioxidant and hyperlipidemic effects of PQQ-secreting EcN are correlated with increased colonic short chain fatty acids (SCFAs; i.e., acetate, propionate, and butyrate) levels, and PQQ concentration in fecal samples (2-fold) and liver (4-fold). Extracted PQQ and vitamin C were given once a week, but they did not exhibit any ameliorative effect against chronic EtOH toxicity.

Conclusions: Accumulated PQQ in tissues prevents hepatic and systemic oxidative damage. PQQ along with SCFAs reduced hyperlipidemia, which can be correlated with changes in mRNA expression of hepatic lipid metabolizing genes. Our study suggests that endogenous generation of PQQ by EcN could be an effective strategy in preventing alcoholic liver disease.

Download full-text PDF

Source
http://dx.doi.org/10.1111/acer.12456DOI Listing

Publication Analysis

Top Keywords

oxidative damage
12
pqq-secreting ecn
12
mrna expression
12
probiotic escherichia
8
escherichia coli
8
coli nissle
8
nissle 1917
8
oxidative tissue
8
tissue damage
8
antioxidant enzyme
8

Similar Publications

Rheumatoid arthritis is an autoimmune disorder affecting multiple joints and requires lifelong treatment. Present study was designed to formulate Esculin-loaded chitosan nanoparticles (ENPs) and evaluation of its anti-inflammatory and anti-arthritic action. The acute toxicity study of ENPs was also performed.

View Article and Find Full Text PDF

Chromium (Cr) is an ever-present abiotic stress that negatively affects crop cultivation and production worldwide. High rhizospheric Cr concentrations inhibit nutrients uptake and their translocation to aboveground parts, thus can affect the growth and development of crop plants. This experiment was designed to evaluate the effects of sole and combined zinc-lysine and iron-lysine applications on photosynthetic efficacy, antioxidative defense, oxidative stress, and nutrient uptake and translocation under Cr stress.

View Article and Find Full Text PDF

Metabolic syndrome during menopause can lead to diabetes, cardiovascular problems, and increased mortality rates. Hormone replacement therapy is recommended to manage climacteric complications, but it has serious adverse effects. This study, therefore, investigated the potential of supplementing some minerals, vitamins, and natural products like boric acid, magnesium, vitamin D3, and extra virgin olive oil on metabolic status of menopausal ovariectomized rats.

View Article and Find Full Text PDF

Omics-driven onboarding of the carotenoid producing red yeast Xanthophyllomyces dendrorhous CBS 6938.

Appl Microbiol Biotechnol

December 2024

Life Sciences and Bioengineering Center, Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA.

Transcriptomics is a powerful approach for functional genomics and systems biology, yet it can also be used for genetic part discovery. Here, we derive constitutive and light-regulated promoters directly from transcriptomics data of the basidiomycete red yeast Xanthophyllomyces dendrorhous CBS 6938 (anamorph Phaffia rhodozyma) and use these promoters with other genetic elements to create a modular synthetic biology parts collection for this organism. X.

View Article and Find Full Text PDF

Aims: There is a potential association between oxidative stress and the development of diabetic kidney disease (DKD). The Oxidative Balance Score (OBS), derived from dietary and lifestyle factors, acts as a comprehensive marker of oxidative stress. Research examining the relationship between OBS and DKD is scarce.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!