Trichuris (whipworm) infects 1 billion people worldwide and causes a disease (trichuriasis) that results in major socioeconomic losses in both humans and pigs. Trichuriasis relates to an inflammation of the large intestine manifested in bloody diarrhea, and chronic disease can cause malnourishment and stunting in children. Paradoxically, Trichuris of pigs has shown substantial promise as a treatment for human autoimmune disorders, including inflammatory bowel disease (IBD) and multiple sclerosis. Here we report whole-genome sequencing at ∼140-fold coverage of adult male and female T. suis and ∼80-Mb draft assemblies. We explore stage-, sex- and tissue-specific transcription of mRNAs and small noncoding RNAs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4105696PMC
http://dx.doi.org/10.1038/ng.3012DOI Listing

Publication Analysis

Top Keywords

genome transcriptome
4
transcriptome porcine
4
porcine whipworm
4
whipworm trichuris
4
trichuris suis
4
suis trichuris
4
trichuris whipworm
4
whipworm infects
4
infects billion
4
billion people
4

Similar Publications

A key goal of biology is to understand the origin of the many cell types that can be observed during diverse processes such as development, regeneration, and disease. Single-cell RNA-sequencing (scRNA-seq) is commonly used to identify cell types in a tissue or organ. However, organizing the resulting taxonomy of cell types into lineage trees to understand the origins of cell states and relationships between cells remains challenging.

View Article and Find Full Text PDF

ScarTrace is a CRISPR/Cas9-based genetic lineage tracing method that allows for uniquely barcoding the DNA of single cells at a target GFP sequence during developing zebrafish embryos. Single cells from barcoded adult zebrafish can be isolated from various tissues (e.g.

View Article and Find Full Text PDF

Spatial Genomic Approaches to Investigate HOX Genes in Mouse Brain Tissues.

Methods Mol Biol

January 2025

Yale Center of Molecular and Cellular Oncology, Yale University, New Haven, CT, USA.

Spatial transcriptomic tools are an upcoming and powerful way to investigate targeted gene expression patterns within tissues. These tools offer the unique advantage of visualizing and understanding gene expression while preserving tissue integrity, thereby maintaining the spatial context of genes. Curio is a robust spatial transcriptomic tool that facilitates high throughput comprehensive spatial gene expression analysis across the entir e transcriptome with high efficiency.

View Article and Find Full Text PDF

Next-Generation Sequencing (NGS), also known as high-throughput sequencing technologies, has enabled rapid and efficient sequencing of large amounts of DNA and RNA. These technologies have revolutionized the field of genomics, transcriptomics, and proteomics and have been widely used in cancer research, leading to advances in clinical diagnosis and treatment. Improvements in the NGS technologies enabled millions of fragments to be sequenced simultaneously in a time- and cost-effective manner and resulted in large amount of genomic data which require efficient analysis methods.

View Article and Find Full Text PDF

Exploring Hox Genes and Their Temporal Expression in an Embryonic Model of Freshwater Crustaceans.

Methods Mol Biol

January 2025

Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.

Hox genes have been investigated in various Arthropod species, resulting in the identification of ten Hox genes, organized in a colinear arrangement within the genome. Among arthropods, crustaceans exhibit a remarkable diversity of body shapes, which are associated with a variety of egg types, embryonic development patterns, and importantly, with the modulation of Hox genes to specify the identity of body segments along the antero-posterior axis of the embryo. Although there are more than 52,000 species of crustaceans described, their genomic resources are relatively limited, making it challenging to employ several molecular tools for studying embryonic development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!