Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Applicability of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for identification of beer-spoilage bacteria was examined. To achieve this, an extensive identification database was constructed comprising more than 4200 mass spectra, including biological and technical replicates derived from 273 acetic acid bacteria (AAB) and lactic acid bacteria (LAB), covering a total of 52 species, grown on at least three growth media. Sequence analysis of protein coding genes was used to verify aberrant MALDI-TOF MS identification results and confirmed the earlier misidentification of 34 AAB and LAB strains. In total, 348 isolates were collected from culture media inoculated with 14 spoiled beer and brewery samples. Peak-based numerical analysis of MALDI-TOF MS spectra allowed a straightforward species identification of 327 (94.0%) isolates. The remaining isolates clustered separately and were assigned through sequence analysis of protein coding genes either to species not known as beer-spoilage bacteria, and thus not present in the database, or to novel AAB species. An alternative, classifier-based approach for the identification of spoilage bacteria was evaluated by combining the identification results obtained through peak-based cluster analysis and sequence analysis of protein coding genes as a standard. In total, 263 out of 348 isolates (75.6%) were correctly identified at species level and 24 isolates (6.9%) were misidentified. In addition, the identification results of 50 isolates (14.4%) were considered unreliable, and 11 isolates (3.2%) could not be identified. The present study demonstrated that MALDI-TOF MS is well-suited for the rapid, high-throughput and accurate identification of bacteria isolated from spoiled beer and brewery samples, which makes the technique appropriate for routine microbial quality control in the brewing industry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijfoodmicro.2014.05.003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!