The structural diversity of ABS₃ compounds with d⁰ electronic configuration for the B-cation.

J Chem Phys

The Makineni Theoretical Laboratories, Department of Chemistry, University of Pennsylvania, 231 S. 34th Street, Philadelphia, Pennsylvania 19104-6323, USA.

Published: June 2014

We use first-principles density functional theory within the local density approximation to ascertain the ground state structure of real and theoretical compounds with the formula ABS3 (A = K, Rb, Cs, Ca, Sr, Ba, Tl, Sn, Pb, and Bi; and B = Sc, Y, Ti, Zr, V, and Nb) under the constraint that B must have a d(0) electronic configuration. Our findings indicate that none of these AB combinations prefer a perovskite ground state with corner-sharing BS6 octahedra, but that they prefer phases with either edge- or face-sharing motifs. Further, a simple two-dimensional structure field map created from A and B ionic radii provides a neat demarcation between combinations preferring face-sharing versus edge-sharing phases for most of these combinations. We then show that by modifying the common Goldschmidt tolerance factor with a multiplicative term based on the electronegativity difference between A and S, the demarcation between predicted edge-sharing and face-sharing ground state phases is enhanced. We also demonstrate that, by calculating the free energy contribution of phonons, some of these compounds may assume multiple phases as synthesis temperatures are altered, or as ambient temperatures rise or fall.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4879659DOI Listing

Publication Analysis

Top Keywords

ground state
12
electronic configuration
8
structural diversity
4
diversity abs₃
4
abs₃ compounds
4
compounds d⁰
4
d⁰ electronic
4
configuration b-cation
4
b-cation first-principles
4
first-principles density
4

Similar Publications

Background: Cervical cancer (CC) is preventable. CC screening decreases CC mortality. Emergency department (ED) patients are at disproportionately high risk for nonadherence with CC screening recommendations.

View Article and Find Full Text PDF

Torsion-Vibration Interactions in S and S Phenylsilane.

J Phys Chem A

January 2025

College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia.

We report the results of a study of the interaction between torsion and the low frequency out-of-plane silyl wag vibration in the ground, S, and excited, S, electronic states of phenylsilane. These studies follow the observation of interactions between methyl torsion and the out-of-plane methyl wagging vibration in toluene, several fluoro-substituted toluenes and -methylpyrrole. The interaction leads to various spectroscopic constants becoming divorced from their usual physical meaning.

View Article and Find Full Text PDF

Characterizing Conical Intersections of Nucleobases on Quantum Computers.

J Chem Theory Comput

January 2025

Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States.

Hybrid quantum-classical computing algorithms offer significant potential for accelerating the calculation of the electronic structure of strongly correlated molecules. In this work, we present the first quantum simulation of conical intersections (CIs) in a biomolecule, cytosine, using a superconducting quantum computer. We apply the contracted quantum eigensolver (CQE)─with comparisons to conventional variational quantum deflation (VQD)─to compute the near-degenerate ground and excited states associated with the conical intersection, a key feature governing the photostability of DNA and RNA.

View Article and Find Full Text PDF

Probing London Dispersion in Proton-Bound Onium Ions: Are Alkyl-Alkyl Steric Interactions Reliably Modeled?

J Am Chem Soc

January 2025

Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich 8093, Switzerland.

We report spectroscopic and spectrometric experiments that probe the London dispersion interaction between -butyl substituents in three series of covalently linked, protonated -pyridines in the gas phase. Molecular ions in the three test series, along with several reference molecules for control, were electrosprayed from solution into the gas phase and then probed by infrared multiphoton dissociation spectroscopy and trapped ion mobility spectrometry. The observed N-H stretching frequencies provided an experimental readout diagnostic of the ground-state geometry of each ion, which could be furthermore compared to a second, independent structural readout via the collision cross section.

View Article and Find Full Text PDF

The cadmium-rich intermetallic compounds RhCd ( = Ca, Sr, Y, La-Nd, Sm-Lu) were synthesized from the elements in sealed tantalum tubes. The elements were reacted in an induction furnace and the samples were post-annealed to increase phase purity and crystallinity. The RhCd phases crystallize with the cubic CeCrAl type structure, space group 3̄.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!