The subject of this paper is studies of the deterministic identifiability of molecular parameters, such as rotational diffusion tensor components and orientation of electronic transition moments, resulting from the time-resolved fluorescence anisotropy experiment. In the most general case considered, a pair of perpendicularly polarized emissions enables the unique determination of all the rotational diffusion tensor's principal components. The influence of the tensor's symmetry and the associated degeneration of its eigenvalues on the identifiability of the electronic transitions moments is systematically investigated. The analysis reveals that independently of the rotational diffusion tensor's symmetry, the transition moments involved in photoselection and emission processes cannot be uniquely identified without a priori information about their mutual orientation or their orientation with respect to the principal axes of the tensor. Moreover, it is shown that increasing the symmetry of the rotational diffusion tensor deteriorates the degree of the transition moments identifiability. To obtain these results analytically, a novel approach to solve bilinear system of equations for Markov parameters is applied. The effect of the additional information, obtained from fluorescence measurements for different molecular mobilities, to improve the identifiability at various levels of analysis is shown. The effectiveness and reliability of the target analysis method for experimental determination of the molecular parameters is also discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4881257 | DOI Listing |
J Neurol
January 2025
Centre for Vestibular Neurology (CVeN), Department of Brain Sciences, Charing Cross Hospital, Imperial College London, London, W6 8RF, UK.
Background: Vestibular dysfunction causing imbalance affects c. 80% of acute hospitalized traumatic brain injury (TBI) cases. Poor balance recovery is linked to worse return-to-work rates and reduced longevity.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Mechanical Engineering, Seoul National University, Seoul, 08826, Korea.
In the present study, we experimentally investigate the liquid flow induced in a rotating drum (cylindrical tank with a short aspect ratio) aligned horizontally, focusing on the variation in the time-averaged and fluctuating flow structures with different fill ratios. For each fill ratio, controlled by varying the water height, we measure the velocity fields at different cross-sectional planes with particle image velocimetry while varying the rotational speed of the drum. Compared to the condition of a fill ratio of 1.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Department of Engineering Mechanics, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden.
We here explore confinement-induced assembly of whey protein nanofibrils (PNFs) into microscale fibers using microfocused synchrotron X-ray scattering. Solvent evaporation aligns the PNFs into anisotropic fibers, and the process is followed in situ by scattering experiments within a droplet of PNF dispersion. We find an optimal temperature at which the order parameter of the protein fiber is maximized, suggesting that the degree of order results from a balance between the time scales of the forced alignment and the rotational diffusion of the fibrils.
View Article and Find Full Text PDFJ Magn Reson
January 2025
São Carlos Institute of Physics, University of São Paulo São Carlos São Paulo Brazil.
Among the numerous measurements carried out during a well-logging procedure, the Nuclear Magnetic Resonance (NMR) assessment is one of the fundamental analyses in determining the economic viability of a well for the oil industry. Nowadays, two reliable approaches, Wireline Logging (WL) and Logging While Drilling (LWD), stand out. WL comprises the acquisition of NMR data under static conditions.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany.
This paper presents a grid-based approach to model molecular association processes as an alternative to sampling-based Markov models. Our method discretizes the six-dimensional space of relative translation and orientation into grid cells. By discretizing the Fokker-Planck operator governing the system dynamics via the square-root approximation, we derive analytical expressions for the transition rate constants between grid cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!