Δ78Δ is a second generation functional all-β sheet variant of IFABP (intestinal fatty acid binding protein) corresponding to the fragment 29-106 of the parent protein. This protein and its predecessor, Δ98Δ (segment 29-126 of IFABP), were initially uncovered by controlled proteolysis. Remarkably, although IFABP and Δ98Δ are monomers in solution, Δ78Δ adopts a stable dimeric structure. With the aim of identifying key structural features that modulate the aggregation of β-proteins, we evaluate here the structure and aggregation propensity of Δ78Δ. The 2,2,2-trifluoroethanol (TFE) induced aggregation of this protein shows a primary nucleation-elongation mechanism, characterized by the stabilization of a dimeric nucleus. Its rate of production from the co-solvent induced aggregation prone state governs the kinetics of polymerization. In this context, the value of Δ78Δ lies in the fact that - being a stable dimeric species - it reduces an otherwise bimolecular reaction to a unimolecular one. Interestingly, even though Δ78Δ and IFABP display similar conformational stability, the abrogated form of IFABP shows an enhanced aggregation rate, revealing the ancillary role played on this process by the free energy of the native proteins. Δ78Δ share with IFABP and Δ98Δ a common putative aggregation-prone central peptide. Differences in the exposure/accessibility of this segment dictated by the environment around this region might underlie the observed variations in the speed of aggregation. Lessons learnt from this natural dimeric protein might shed light on the early conformational events leading to β-conversion from barrels to amyloid aggregates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbapap.2014.06.002 | DOI Listing |
Pharmaceutics
December 2024
PostGraduate Program in Chemistry, Center for Exact Sciences and Technology (CCET), UFMA-Federal University of Maranhão, São Luís 65080-805, Brazil.
Leishmaniasis, caused by protozoa of the genus , is a major global health issue due to the limitations of current treatments, which include low efficacy, high costs, and severe side effects. This study aimed to develop a more effective and less toxic therapy by utilizing zein nanoparticles (ZNPs) in combination with a nonpolar fraction (DCMF) from (Syn. ), a plant rich in dimeric flavonoids called brachydins.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Physical Science and Technology, Ningbo University, Ningbo 315211, China; Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States. Electronic address:
Human calcitonin (hCT) is a peptide hormone that regulates calcium homeostasis, but its abnormal aggregation can disrupt physiological functions and increase the risk of medullary thyroid carcinoma. To elucidate the mechanisms underlying hCT aggregation, we investigated the self-assembly dynamics of hCT segments (hCT, hCT, and hCT) and the folding and dimerization of full-length hCT through microsecond atomistic discrete molecular dynamics (DMD) simulations. Our results revealed that hCT and hCT predominantly existed as isolated monomers with transient small-sized oligomers, indicating weak aggregation tendencies.
View Article and Find Full Text PDFJ Biomol Struct Dyn
January 2025
College of Applied Medical Sciences, lmam Abdulrahman Bin Faisal University (lAU), Dammam, Saudi Arabia.
The present study explores the conformational dynamics of the membrane protein of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) within the Endoplasmic Reticulum-Golgi Intermediate Compartment (ERGIC) complex using an all-atomistic molecular dynamics simulation approach. Significant structural changes were observed in the N-terminal, C-terminal, transmembrane, and beta-sheet sandwich domains of the MERS-CoV membrane protein. This study also highlights the structural similarities between the MERS-CoV and the SARS-CoV-2 membrane proteins, particularly in how both exhibit a distinct kink in the transmembrane helix caused by aromatic residue-lipid interactions.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
WNT/β-catenin signaling plays key roles in development and cancer. ZNRF3/RNF43 modulates Frizzleds through ubiquitination, dampening WNT/β-catenin signaling. Conversely, RSPO1-4 binding to LGR4-6 and ZNRF3/RNF43 enhances WNT/β-catenin signaling.
View Article and Find Full Text PDFChemSusChem
January 2025
University of Rochester, Department of Chemical Engineering, ., 14627, Rochester, UNITED STATES OF AMERICA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!