Here, we describe altered sorting of sortilin in adipocytes deficient for the σ1B-containing AP-1 complex, leading to the inhibition of adipogenesis. The AP-1 complex mediates protein sorting between the trans-Golgi network and endosomes. Vertebrates express three AP1 σ1 subunit isoforms - σ1A, σ1B and σ1C (also known as AP1S1, AP1S2 and AP1S3, respectively). σ1B-deficient mice display impaired recycling of synaptic vesicles and lipodystrophy. Here, we show that sortilin is overexpressed in adipose tissue from σ1B(-/-) mice, and that its overexpression in wild-type cells is sufficient to suppress adipogenesis. σ1B-specific binding of sortilin requires the sortilin DxxD-x12-DSxxxL motif. σ1B deficiency does not lead to a block of sortilin transport out of a specific organelle, but the fraction that reaches lysosomes is reduced. Sortilin binds to the receptor DLK1, an inhibitor of adipocyte differentiation, and the overexpression of sortilin prevents DLK1 downregulation, leading to enhanced inhibition of adipogenesis. DLK1 and sortilin expression are not increased in the brain tissue of σ1B(-/-) mice, although this is the tissue with the highest expression of σ1B and sortilin. Thus, adipose-tissue-specific and σ1B-dependent routes for the transport of sortilin exist and are involved in the regulation of adipogenesis and adipose-tissue mass.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jcs.146886 | DOI Listing |
Biochem Genet
December 2024
Department of Cardiovascular Medicine, Shanghai Baoshan Luodian Hospital, No. 88, Yongshun Road, Baoshan District, Shanghai, 201908, China.
Recent studies highlight the crucial role of microRNAs (miRNAs) in coronary artery disease (CAD). This retrospective study investigated the abundance of miR-432-5p in the serum of CAD patients and explored its role. 252 volunteers were included.
View Article and Find Full Text PDFThis study aims to investigate the systemic mechanism of Panax notoginseng saponins (PNS) in antiaging using network pharmacology combined with experimental validation. String database and Cytoscape3.7.
View Article and Find Full Text PDFSorting protein-related receptor containing class A repeats (SORLA) is an intracellular trafficking receptor encoded by the Alzheimer's disease (AD) gene SORL1 (sortilin-related receptor 1). Recent findings argue that altered expression in microglia may underlie the genome-wide risk of AD seen with some SORL1 gene variants, however, the functional significance of the receptor in microglia remains poorly explained. Using unbiased omics and targeted functional analyses in iPSC-based human microglia, we identified a crucial role for SORLA in sensitizing microglia to pro-inflammatory stimuli.
View Article and Find Full Text PDFAutophagy
December 2024
College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.
SORT1 (sortilin 1), a member of the the Vps10 (vacuolar protein sorting 10) family, is involved in hepatic lipid metabolism by regulating very low-density lipoprotein (VLDL) secretion and facilitating the lysosomal degradation of CES1 (carboxylesterase 1), crucial for triglyceride (TG) breakdown in the liver. This study explores whether SORT1 is targeted for degradation by chaperone-mediated autophagy (CMA), a selective protein degradation pathway that directs proteins containing KFERQ-like motifs to lysosomes via LAMP2A (lysosomal-associated membrane protein 2A). Silencing LAMP2A or HSPA8/Hsc70 with siRNA increased cytosolic SORT1 protein levels.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Department of Bionano Technology, Gachon Medical Research Institute, Gachon University, Seongnam 13120, Republic of Korea.
Alzheimer's disease (AD) is a complex neurodegenerative disorder influenced by various genetic factors. In addition to the well-established amyloid precursor protein (), Presenilin-1 (), Presenilin-2 (), and apolipoprotein E (), several other genes such as Sortilin-related receptor 1 (), Phospholipid-transporting ATPase ABCA7 (), Triggering Receptor Expressed on Myeloid Cells 2 (), Phosphatidylinositol-binding clathrin assembly protein (), and clusterin () were implicated. These genes contribute to neurodegeneration through both gain-of-function and loss-of-function mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!