Cortical bone is typically regarded as "MR invisible" with conventional clinical magnetic resonance imaging (MRI) pulse sequences. However, recent studies have demonstrated that free water in the microscopic pores of cortical bone has a short T2* but a relatively long T2, and may be detectable with conventional clinical spin echo (SE) or fast spin echo (FSE) sequences. In this study we describe the use of a conventional two-dimensional (2D) FSE sequence to assess cortical bone microstructure and measure cortical porosity using a clinical 3T scanner. Twelve cadaveric human cortical bone samples were studied with MRI and microcomputed tomography (μCT) (downsampled to the same spatial resolution). Preliminary results show that FSE-determined porosity is highly correlated (R(2)=0.83; P<0.0001) with μCT porosity. Bland-Altman analysis suggested a good agreement between FSE and μCT with tight limit of agreement at around 3%. There is also a small bias of -2% for the FSE data, which suggested that the FSE approach slightly underestimated μCT porosity. The results demonstrate that cortical porosity can be directly assessed using conventional clinical FSE sequences. The clinical feasibility of this approach was also demonstrated on six healthy volunteers using 2D FSE sequences as well as 2D ultrashort echo time (UTE) sequences with a minimal echo time (TE) of 8μs, which provide high contrast imaging of cortical bone in vivo.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4125420 | PMC |
http://dx.doi.org/10.1016/j.bone.2014.06.004 | DOI Listing |
Brain Spine
March 2024
Consultant Orthopaedic Surgeon, San Carlo Borromeo Hospital, Via Pio II 3, Milano, Italy.
Introduction: Bisphosphonates are commonly used to prevent osteoporotic fractures. Many randomized controlled trials have proved the efficacy of bisphosphonates, showing their ability to increase bone mineral density and decrease the risk of hip and vertebral fractures. Atypical, bisphosphonate-related fractures concerning the femur have been widely described and a list of primary and secondary clinical and radiographic criteria are used in order to achieve diagnosis.
View Article and Find Full Text PDFJBMR Plus
February 2025
Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, United States.
Discoidin Domain Receptor 1 (DDR1) is a receptor tyrosine kinase that binds to and is activated by collagen(s), including collagen type I. deletion in osteoblasts and chondrocytes has previously demonstrated the importance of this receptor in bone development. In this study, we examined the effect of DDR1 ablation on bone architecture and mechanics as a function of aging.
View Article and Find Full Text PDFAims: The aim of this study was to investigate the effect of two different bisphosphonate types on bone using dental panoramic radiographs (DPRs) and to compare these findings with a healthy cohort.
Study Design: Panoramic dental radiographs of bisphosphonate users (30) and healthy individuals (30) were retrospectively evaluated for the study. Regarding FA, standardized 50 × 50 pixel regions of interest (ROI) were identified for each patient.
Oper Orthop Traumatol
January 2025
AOFE Clinics Oosterbeek, Oosterbeek, The Netherlands.
Objective: Transcutaneous osseointegration prosthetic systems (TOPS) offer a stable skeletal attachment for artificial limbs post-extremity amputation, serving as an alternative to socket attachment. Press-fit osseointegration implants (OI) utilized in TOPS consistently enhance quality of life and mobility for amputees, particularly those experiencing socket-related issues. Despite notable benefits, late complications such as infection and implant loosening pose challenges unique to TOPS due to their percutaneous nature.
View Article and Find Full Text PDFNutrients
December 2024
Department of Medicine, School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia.
Background/objectives: Type 2 diabetes (T2D) is associated with an increased risk of adverse musculoskeletal outcomes likely due to heightened chronic inflammation, oxidative stress, and advanced glycation end-products (AGE). Carnosine has been shown to have anti-inflammatory, anti-oxidative, and anti-AGE properties. However, no clinical trials have examined the impact of carnosine on musculoskeletal health in adults with prediabetes or T2D.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!