Cathepsin K (CatK) is a cysteine protease, expressed predominantly in osteoclasts (OC) which degrades demineralized bone matrix. Novel selective inhibitors of CatK are currently being developed for the treatment of postmenopausal osteoporosis. Pharmacological inhibition of CatK reduces OC resorption activity while preserving bone formation in preclinical models. Disruption of the CatK gene in mice also results in high bone mass due to impaired bone resorption and elevated formation. Here, we assessed mid-shaft femoral fracture healing in 8-10week old CatK knock-out (KO) versus wild type (WT) mice. Fracture healing and callus formation were determined in vivo weekly via X-ray, and ex vivo at days 14, 18, 28 and 42 post-fracture by radiographic scoring, micro-computed tomography (μCT), histomorphometry and terminal mechanical four point bend strength testing. Radiological evaluation indicated accelerated bone healing and remodeling for CatK KO animals based on increased total radiographic scores that included callus opacity and bridging at days 28 and 42 post-fracture. Micro-CT based total callus volume was similar in CatK KO and WT mice at day 14. Callus size in CatK KO mice was 25% smaller than that in WT mice at day 18, statistically significant by day 28 and exhibited significantly higher mineralized tissue volume and volumetric BMD as compared to WT by day 18 onward. Osteoclast surface and osteoid surface trended higher in CatK KO calluses at all time-points and osteoblast number was also significantly increased at day 28. Increased CatK KO callus mineral density was reflected in significant increases in peak load and stiffness over WT at day 42 post-fracture. Regression analysis indicated a positive correlation (r=0.8671; p<0.001) between callus BMC and peak load indicating normal mineral properties in CatK KO calluses. Taken together, gene deletion of cathepsin K in mice accelerated callus size resolution, significantly increased callus mineralized mass, and improved mechanical strength as compared to wild type mice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bone.2014.04.032 | DOI Listing |
ACS Catal
January 2025
Chemical Biotechnology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, 9747 AG Groningen, the Netherlands.
Aspartate ammonia lyases catalyze the reversible amination of fumarate to l-aspartate. Recent studies demonstrate that the thermostable enzyme from sp. YM55-1 (AspB) can be engineered for the enantioselective production of substituted β-amino acids.
View Article and Find Full Text PDFFront Microbiol
December 2024
Department of Laboratory Sciences, The People's Hospital of Yuhuan, Yuhuan, China.
Background: The mechanisms underlying the resistance of the genus to aminoglycosides are complex, which poses a challenge for the efficient treatment of infectious diseases caused by these pathogens. To help clinicians treat infections more effectively, a more comprehensive understanding of antibiotic resistance mechanisms is urgently needed.
Methods: Plates were streaked to isolate bacteria from the intestinal contents of fish.
ACS Catal
December 2024
Departments of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States.
Inorg Chem
January 2025
Physical Institute, Karlsruhe Institut of Technology (KIT) Campus South, Wolfgang-Gaede-Str. 1, Karlsruhe 76131, Germany.
The dinuclear β-diketiminato complex [LClDy(μ-Cl)DyL(THF)] () (L = {2,6-PrCH-NC(Me)CHC(Me)N-2,6-PrCH}) was obtained by reaction of DyCl with KL in a molar ratio of 1:1 and used for the preparation of the mixed-ligand complex [LDy(μ-3,5-Cat)] () by salt metathesis reaction with 3,5-CatK (3,5-Cat -3,5-di--butyl-catecholate). Reactions of 3,5-CatNa with [LLnCl(THF)] (Ln = Dy, Y) ligated with the less bulky ligand L = {2,4,6-MeCH-NC(Me)CHC(Me)N-2,4,6-MeCH} afforded the mixed-ligand THF-containing complexes [LLn(μ-3,5-Cat)(THF)] (Ln = Dy (), Y ()). All new complexes were fully characterized, and the solid-state structures were determined by single-crystal X-ray diffraction.
View Article and Find Full Text PDFJACS Au
November 2024
Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States.
A baccatin III:3-amino-3-phenylpropanoyltransferase (BAPT, Accession: AY082804) in clade 6 of the BAHD family catalyzed a Mg-dependent transfer of isoserines from their corresponding CoA thioesters. An advanced taxane baccatin III on the paclitaxel biosynthetic pathway in plants was incubated BAPT and phenylisoserine CoA or isobutenylisoserinyl CoA with and without MgCl. BAPT biocatalytically converted baccatin III to its 13--phenylisoserinyl and 3-(1',1'-dimethylvinyl)isoserinyl analogs, an activity that abrogated when Mg ions were omitted.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!