Fibrosis is one of the most serious side effects in cancer patients undergoing radio-/ chemo-therapy, especially of the lung, pancreas or kidney. Based on our previous finding that galectin-1 (Gal-1) was significantly increased during radiation-induced lung fibrosis in areas of pulmonary fibrosis, we herein clarified the roles and action mechanisms of Gal-1 during fibrosis. Our results revealed that treatment with TGF-β1 induced the differentiation of fibroblast cell lines (NIH3T3 and IMR-90) to myofibroblasts, as evidenced by increased expression of the fibrotic markers smooth muscle actin-alpha (α-SMA), fibronectin, and collagen (Col-1). We also observed marked and time-dependent increases in the expression level and nuclear accumulation of Gal-1. The TGF-β1-induced increases in Gal-1, α-SMA and Col-1 were decreased by inhibitors of PI3-kinase and p38 MAPK, but not ERK. Gal-1 knockdown using shRNA decreased the phosphorylation and nuclear retention of Smad2, preventing the differentiation of fibroblasts. Gal-1 interacted with Smad2 and phosphorylated Smad2, which may accelerate fibrotic processes. In addition, up-regulation of Gal-1 expression was demonstrated in a bleomycin (BLM)-induced mouse model of lung fibrosis in vivo. Together, our results indicate that Gal-1 may promote the TGF-β1-induced differentiation of fibroblasts by sustaining nuclear localization of Smad2, and could be a potential target for the treatment of pulmonary fibrotic diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yexcr.2014.06.001DOI Listing

Publication Analysis

Top Keywords

nuclear retention
8
retention smad2
8
gal-1
8
lung fibrosis
8
differentiation fibroblasts
8
fibrosis
6
smad2
5
induction galectin-1
4
galectin-1 tgf-β1
4
tgf-β1 accelerates
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!