Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Introduction: Many laparoscopic surgeons report musculoskeletal symptoms that are thought to be related to the ergonomic stress of performing laparoscopy. Robotic surgical systems may address many of these limitations. To date, however, there have been no studies exploring the quantitative ergonomics of robotic surgery. In this study, we sought to compare the activation of bilateral biceps, triceps, deltoid, and trapezius muscle groups during traditional laparoscopic surgery (TLS) and robot-assisted laparoscopic surgery (RALS) procedures, as quantified by surface electromyography (sEMG).
Methods: One surgeon with expertise in TLS and RALS performed 18 operative procedures (13 TLS, 5 RALS) while sEMG measurements were obtained from bilateral biceps, triceps, deltoid, and trapezius muscles. sEMG measurements were normalized to the maximum voluntary contraction of each muscle (%MVC). We compared mean %MVC values for each muscle group during TLS and RALS with unpaired t-tests and considered differences with a p value <0.05 to be statistically significant.
Results: Muscle activation was higher during TLS compared to RALS in bilateral biceps (L Biceps RALS:1.01%MVC, L Biceps TLS:3.14, p = 0.01; R Biceps RALS:1.81%MVC, R Biceps TLS:4.53, p = 0.0002). Muscle activation was higher during TLS compared to RALS in bilateral triceps (L Triceps RALS:1.73%MVC, L Triceps TLS:3.58, p = 0.04; R Triceps RALS:1.59%MVC, R Triceps TLS:5.11, p = 0.02). Muscle activation was higher during TLS compared to RALS in bilateral deltoids (L Deltoid RALS:1.50%MVC, L Deltoid TLS:3.68, p = 0.03; R Deltoid RALS:1.19%MVC, R Deltoid TLS:2.57, p = 0.01). Significant differences were not detected in the bilateral trapezius muscles (L Trapezius RALS:1.50 %MVC, L Trapezius TLS:3.68, p = 0.03; R Trapezius RALS:1.19%MVC, R Trapezius TLS:2.57, p = 0.01).
Discussion: We have quantitatively examined the ergonomics of TLS and RALS and shown that in a single surgeon, TLS procedures are associated with significantly elevated biceps, triceps, and deltoid activation bilaterally when compared to RALS procedures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00464-014-3604-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!