The use of anesthetics and sedatives has been suggested to be a contributor to Alzheimer's disease neuropathogenesis. We wanted to address the in vivo relevance of those substances in the Tg2576 Alzheimer's mouse model. Tg7526 mice were anesthesia-sedated for 90 min once a week for 4 weeks. Y maze, Congo Red, and amyloid beta (Aβ) immunochemistry were performed. We did not find any significant change in the navigation behavior of the exposed mice compared to the controls. Significantly less deposition of Aβ in the CA1 area of the hippocampus and frontal cortex of mice exposed to isoflurane, propofol, diazepam, ketamine, and pentobarbital was observed. In the dentate gyrus, Aβ deposition was significantly greater in the group treated with pentobarbital. Congo Red staining evidenced significantly fewer fibrils in the cortex of mice exposed to diazepam, ketamine, or pentobarbital. The adopted repetitive exposure did not cause a significant detriment in Tg7526 mouse.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12640-014-9478-8 | DOI Listing |
Free Neuropathol
January 2024
Department of Pathology, Nash Family Department of Neuroscience, Department of Artificial Intelligence & Human Health, Neuropathology Brain Bank & Research CoRE, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
This review highlights a collection of both diverse and highly impactful studies published in the previous year selected by the author from the neurodegenerative neuropathology literature. As with previous reviews in this series, the focus is, to the best of my ability, to highlight human tissue-based experimentation most relevant to experimental and clinical neuropathologists. A concerted effort was made to balance the selected studies across neurodegenerative disease categories, approaches, and methodologies to capture the breadth of the research landscape.
View Article and Find Full Text PDFACS Appl Energy Mater
January 2025
Department of Physics and Engineering Physics, Tulane University, New Orleans, Louisiana 70118-5636, United States.
Two-dimensional (2D) transition metal dichalcogenides (TMDCs) such as MoS and WSe are excellent candidates for photovoltaic (PV) applications. Here, we present the modeling, fabrication, and characterization of large-area CVD-grown MoS-based flexible PV on an off-the-shelf, 3 μm-thick flexible colorless polyimide with polyimide encapsulation designed for space structures. The devices are characterized under 1 sun AM0 illumination and show a of 0.
View Article and Find Full Text PDFHistol Histopathol
January 2025
Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India.
Autism spectrum disorder (ASD) is a globally recognized neurodevelopmental condition characterized by repetitive and restrictive behavior, persistent deficits in social interaction and communication, mental disturbances, etc., affecting approximately 1 in 100 children worldwide. A combination of genetic and environmental factors is involved in the etiopathogenesis of the disease, but specific biomarkers have not yet been identified.
View Article and Find Full Text PDFJ Zhejiang Univ Sci B
July 2024
Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine; Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou 310003, China.
Acute stress disorder (ASD) is a transient psychiatric disorder that may arise subsequent to abrupt, extreme trauma exposure, and serves as a reliable indicator for the subsequent development of posttraumatic stress disorder (PTSD) (Bryant, 2011; Battle, 2013). It exhibits rapid progression in the aftermath of trauma and persists for a duration of days or weeks (not exceeding one month), manifesting symptoms of dissociation, re-experiencing, avoidance, and hyperarousal (Bielas et al., 2018).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!