Background Aims: Evaluation of the BD Stem Cell Enumeration Kit was conducted at four clinical sites with flow cytometry CD34(+) enumeration to assess agreement between two investigational methods: (i) the BD FACSCanto II and BD FACSCalibur systems and (ii) the predicate method (Beckman Coulter StemKit and StemTrol, Immunotech SAS, Beckman Coulter, Marseille Cedex 9, France).
Methods: Leftover and delinked specimens (n = 1032) from clinical flow cytometry testing were analyzed on the BD FACSCanto II (n = 918) and BD FACSCalibur (n = 905) in normal and mobilized blood, frozen and thawed bone marrow and leucopheresis and cord blood anticoagulated with citrate phosphate dextrose, anticoagulant citrate dextrose-solution A, heparin and ethylenediaminetetraacetate, alone or in combination. Fresh leucopheresis analysis addressed site equivalency for sample preparation, testing and analysis.
Results: The mean relative bias showed agreement within predefined parameters for the BD FACSCanto II (-2.81 to 4.31 ±7.1) and BD FACSCalibur (-2.69 to 5.2 ±7.9). Results are reported as absolute and relative differences compared with the predicate for viable CD34(+), percentage of CD34(+) in CD45(+) and viable CD45(+) populations (or gates). Bias analyses of the distribution of the predicate low, mid and high bin values were done using BD FACSCanto II optimal gating and BD FACSCalibur manual gating for viable CD34(+), percentage of CD34(+) in CD45(+) and viable CD45(+). Bias results from both investigational methods show agreement. Deming regression analyses showed a linear relationship with R(2) > 0.92 for both investigational methods.
Discussion: In conclusion, the results from both investigational methods demonstrated agreement and equivalence with the predicate method for enumeration of absolute viable CD34(+), percentage of viable CD34(+) in CD45(+) and absolute viable CD45(+) populations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5864286 | PMC |
http://dx.doi.org/10.1016/j.jcyt.2014.03.006 | DOI Listing |
Front Cell Dev Biol
December 2024
Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, India.
Human hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs) are the major stem cells of the bone marrow and are usually isolated from the peripheral blood. In the present study, we isolated these stem cells by an apheresis method from a donor who was administered granulocyte colony-stimulating factor (G-CSF). propagation of these stem cells showed a plastic-adherence property expressing CD73 and CD105 surface markers, which is a characteristic feature of MSCs.
View Article and Find Full Text PDFVox Sang
November 2024
Australian Red Cross Lifeblood, Sydney, Australia.
Background And Objectives: Leucoreduction is used to remove donor leucocytes during red blood cell (RBC) manufacture. However, not all are removed, and long-term survival of donor leucocytes, termed transfusion-associated microchimerism (TAM), has been shown to occur in some patients following RBC transfusion. The mechanism of TAM occurrence is unknown.
View Article and Find Full Text PDFTransfusion
December 2024
Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA.
Background: Flow cytometry protocols for counting fresh CD34+ cell samples are not ideal for cryopreserved products due to cryoprotectant cytotoxicity. For cryopreserved samples, often large volumes of hypotonic solutions, which can cause cell death, are used to remove the cryoprotectant with a post-thaw wash. We recently developed a novel multistep dilution method with subsequent flow cytometry analysis to allow for accurate and reproducible results.
View Article and Find Full Text PDFHum Gene Ther
November 2024
ART-TG, Inserm US35, Corbeil-Essonnes, France.
PLoS One
November 2024
Takeda Development Center Americas, Inc., San Diego, California, United States of America.
Induction of fetal hemoglobin (HbF) has been shown to be a viable therapeutic approach to treating sickle cell disease and potentially other β-hemoglobinopathies. To identify targets and target-modulating small molecules that enhance HbF expression, we engineered a human umbilical-derived erythroid progenitor reporter cell line (HUDEP2_HBG1_HiBiT) by genetically tagging a HiBiT peptide to the carboxyl (C)-terminus of the endogenous HBG1 gene locus, which codes for γ-globin protein, a component of HbF. Employing this reporter cell line, we performed a chemogenomic screen of approximately 5000 compounds annotated with known targets or mechanisms that have achieved clinical stage or approval by the US Food and Drug Administration (FDA).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!