Aims: This study observes the effects of phlorizin on diabetic nephrology in db/db diabetic mice and explores possible underlying mechanisms.
Methods: Sixteen diabetic db/db mice and eight age-matched db/m mice were divided into three groups: vehicle-treated diabetic group (DM group), diabetic group treated with phlorizin (DMT group) and normal control group (CC group). Phlorizin was given in normal saline solution by intragastric administration for 10 weeks. Differentially expressed proteins in three groups were identified using iTRAQ quantitative proteomics and the data were further analyzed with ingenuity pathway analysis.
Results: The body weight and serum concentrations of fasting blood glucose (FBG), advanced glycation end products (AGEs), total cholesterol, triglycerides, blood urea nitrogen, creatinine and 24-h urine albumin were increased in the DM group compared to those of the CC group (P<0.05), and they were decreased by treatment with phlorizin (P<0.05). Morphologic observations showed phlorizin markedly attenuated renal injury. Phlorizin prevented diabetic nephropathy by regulating the expression of a series of proteins involved in renal and urological disease, molecular transport, free radical scavenging, and lipid metabolism.
Conclusions: Phlorizin protects mice from diabetic nephrology and thus may be a novel therapeutic approach for the treatment of diabetic nephrology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jdiacomp.2014.04.010 | DOI Listing |
Molecules
December 2024
Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany.
Apple pomace, a by-product of apple juice production, is typically discarded as waste. Recent approaches have focused on utilizing apple pomace by extracting beneficial bioactive compounds, such as antioxidant phenolic compounds (PCs). Before these PC-rich extracts can be used in food products, they must undergo food preservation and processing methods.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, China.
Phloretin and its derivatives are dihydrochalcone compounds with diverse pharmacological properties and biological activities, offering significant potential for applications in the food and pharmaceutical industries. Due to their structural similarity to flavonoids, their extraction and isolation were highly challenging. Although the biosynthesis of phloretin via three distinct pathways has been reported, a systematic comparison within the same host has yet to be conducted.
View Article and Find Full Text PDFNutrients
November 2024
Department of Experimental Medicine, University "Sapienza", 00161 Rome, Italy.
Background: The aim of the present study was to evaluate the effectiveness and safety of a nutraceutical combination given to insulin-resistant overweight patients with altered lipid profiles. To this end, an observational study was designed in which 74 individuals (50 females and 24 males) underwent an observational period of 3 months.
Methods: During this time, a specific nutraceutical combination containing myo-inositol, glycine, , α-lipoic acid, phlorizin, zinc, vitamin B, and chromium picolinate was administered.
Fitoterapia
January 2025
College of Life Science, North China University of Science and Technology, Tangshan, Hebei 063202, PR China; School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063202, PR China. Electronic address:
Invest Ophthalmol Vis Sci
November 2024
Department of Ophthalmology and Visual Sciences, University of Michigan, Michigan Medicine, Kellogg Eye Center, Ann Arbor, Michigan, United States.
Purpose: Studies have suggested that photoreceptors (PR) are altered by diabetes, contributing to diabetic retinopathy (DR) pathology. Here, we explored the effect of diabetes on retinal ischemic injury.
Methods: Retinal ischemia-reperfusion (IR) injury was caused by elevation of intraocular pressure in 10-week-old BKS db/db type 2 diabetes mellitus (T2DM) mice or C57BL/6J mice at 4 or 12 weeks after streptozotocin (STZ)-induced type 1 diabetes mellitus (T1DM), and respective nondiabetic controls.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!