A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Changes in histone H3 lysine 36 methylation in porcine oocytes and preimplantation embryos. | LitMetric

Changes in histone H3 lysine 36 methylation in porcine oocytes and preimplantation embryos.

PLoS One

Department of Animal Science & Biotechnology, Research Center for Transgenic Cloned Pigs, Chungnam National University, Daejeon, Korea.

Published: December 2015

Histone H3 lysine 36 (H3K36) methylation is known to be associated with transcriptionally active genes, and is considered a genomic marker of active loci. To investigate the changes in H3K36 methylation in pig, we determined the mono-, di-, and tri-methylations of H3K36 (H3K36me1, H3K36me2 and H3K36me3, respectively) in porcine fetal fibroblasts, oocytes and preimplantation embryos by immunocytochemistry using specific antibodies and confocal microscopy. These analyses revealed that only H3K36me3 in porcine fetal fibroblasts consistently colocalized with transcription sites identified as actively synthesizing RNA based on fluorouridine (FU) incorporation. Treatment of cells with flavopiridol, which blocks transcription elongation, completely abrogated both H3K36me3 signals and RNA synthesis. All three types of H3K36 methylation were present and did not significantly differ during oocyte maturation. In parthenogenetic embryos, H3K36me1 and -me2 were detected in 1-cell through blastocyst-stage embryos. In contrast, H3K36me3 was not detected in most 1-cell stage embryos. H3K36me3 signals became detectable in 2-cell stage embryos, peaked at the 4-cell stage, decreased at the 8-cell stage, and then became undetectable at blastocyst stages in both parthenogenetic and in vitro-fertilized (IVF) embryos. Unlike the case in IVF embryos, H3K36me3 could not be demethylated completely during the 1-cell stage in somatic cell nuclear transfer (SCNT) embryos. These results collectively indicate that H3K36me3, but not H3K36me1 or -me2, is associated with transcription elongation in porcine fetal fibroblasts. H3K36me3 is developmentally regulated and may be a histone mark of embryonic gene activation in pig. Aberrant H3K36 tri-methylation occurred during the nuclear reprogramming of SCNT embryos.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4057445PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0100205PLOS

Publication Analysis

Top Keywords

h3k36 methylation
12
porcine fetal
12
fetal fibroblasts
12
embryos
10
histone lysine
8
oocytes preimplantation
8
preimplantation embryos
8
h3k36me3
8
h3k36me3 porcine
8
transcription elongation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!