Auxin, indole-3-acetic acid (IAA), plays a crucial role for morphogenesis, development, growth, and tropisms in many plant species. Auxin biosynthesis is accomplished via specific pathways depending on several enzymes starting from amino acid, tryptophan. Auxin biosynthesis in maize is particularly active at the tip of coleoptile expressing abundant YUCCA (YUC) protein, which is essential for auxin biosynthesis. In vitro experiment demonstrated that precursor of auxin molecule; indole-3-acetaldehyde (IAAld) was generated by illumination of the mixture of tryptophan and flavin in non-enzymatic manner. In addition, we have detected immediate production of reactive oxygen species (ROS) in illuminated Arabidopsis root cells. In this perspective, we are proposing the non-enzymatic regulation of redox homeostasis and auxin biosynthesis throughout the plant body under variable environmental light conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4205145PMC
http://dx.doi.org/10.4161/psb.29522DOI Listing

Publication Analysis

Top Keywords

auxin biosynthesis
20
auxin
7
biosynthesis
5
light-dependent control
4
control redox
4
redox balance
4
balance auxin
4
biosynthesis plants
4
plants auxin
4
auxin indole-3-acetic
4

Similar Publications

The Tapetum Determinant 1 (TPD1) family proteins are known to play a crucial role in the regulation of reproduction in plants, including Cenchrus americanus (pearl millet). However, members of TPD1 family proteins have not been fully identified. The current study aims to identify and characterize the TPD1 family proteins in Cenchrus americanus (L.

View Article and Find Full Text PDF

Melatonin increases Pb tolerance in P. ovata seedlings via the regulation of growth and stress-related phytohormones, ROS scavenging and genes responsible for melatonin synthesis, metal chelation, and stress defense. Lead (Pb) is a highly toxic heavy metal that accumulates in plants through soil and air contamination and impairs its plant growth and development.

View Article and Find Full Text PDF

Increase in IAA levels by EPSPS copy number variation relates to fitness advantage in Eleusine indica.

Pest Manag Sci

January 2025

State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.

Background: Long-term use of chemical weed control has led to some weedy species evolving herbicide resistance traits with fitness advantage. Our previous studies revealed glyphosate resistance in an Eleusine indica population due to copy number variation of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) comes with fitness advantage under non-competitive conditions. Here, transcriptomics and targeted metabolomics were used to investigate physiological basis associated with the fitness advantage.

View Article and Find Full Text PDF

Auxin Triggers AHR Pathway Activation in the Auxin-Inducible Degron System in Mammalian Cells.

Biochemistry (Mosc)

December 2024

Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.

The auxin-inducible degron (AID) system is widely used to study function of various proteins. The plant hormone auxin is used as an inducer in this system, which easily penetrates into the cells and causes proteasomal degradation of the protein of interest fused to a small degron tag. It is often assumed that as a plant hormone, auxin does not significantly affect physiology of animal cells.

View Article and Find Full Text PDF

Fruit dropping represents a concern in many fruit species, including L. This research investigated the role of two plant growth regulators (PGRs), naphthaleneacetic acid (NAA) and 1-methylcyclopropene (1-MCP), in mitigating preharvest berry dropping (PHBD) through affecting ethylene (ET) and auxin (AUX) metabolism and interactions, key hormones involved in abscission. The experiment was carried out on cv.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!