A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Perivascular adipose tissue inhibits endothelial function of rat aortas via caveolin-1. | LitMetric

Perivascular adipose tissue inhibits endothelial function of rat aortas via caveolin-1.

PLoS One

Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan; Department of Pharmacology, Taipei Medical University, Taipei, Taiwan.

Published: May 2015

Perivascular adipose tissue (PVAT)-derived factors have been proposed to play an important role in the pathogenesis of atherosclerosis. Caveolin-1 (Cav-1), occupying the calcium/calmodulin binding site of endothelial NO synthase (eNOS) and then inhibiting nitric oxide (NO) production, is also involved in the development of atherosclerosis. Thus, we investigated whether PVAT regulated vascular tone via Cav-1 and/or endothelial NO pathways. Isometric tension studies were carried out in isolated thoracic aortas from Wistar rats in the presence and absence of PVAT. Concentration-response curves of phenylephrine, acetylcholine, and sodium nitroprusside were illustrated to examine the vascular reactivity and endothelial function. The protein expressions of eNOS and Cav-1 were also examined in aortic homogenates. Our results demonstrated that PVAT significantly enhanced vasoconstriction and inhibited vasodilatation via endothelium-dependent mechanism. The aortic NO production was diminished after PVAT treatment, whereas protein expression and activity of eNOS were not significantly affected. In addition, Cav-1 protein expression was significantly increased in aortas with PVAT transfer. Furthermore, a caveolae depleter methyl-β-cyclodextrin abolished the effect of PVAT on the enhancement of vasoconstriction, and reversed the impairment of aortic NO production. In conclusion, unknown factor(s) released from PVAT may inhibit endothelial NO production and induce vasocontraction via an increase of Cav-1 protein expression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4057398PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0099947PLOS

Publication Analysis

Top Keywords

protein expression
12
perivascular adipose
8
adipose tissue
8
endothelial function
8
aortic production
8
cav-1 protein
8
pvat
7
endothelial
5
cav-1
5
tissue inhibits
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!