Elevated copper in the amyloid plaques and iron in the cortex are observed in mouse models of Alzheimer's disease that exhibit neurodegeneration.

Biomed Spectrosc Imaging

Department of Chemistry, Stony Brook University, Stony Brook NY, USA ; Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA ; Photon Sciences Directorate, Brookhaven National Laboratory, Upton, NY, USA.

Published: April 2013

Background: In Alzheimer's disease (AD), alterations in metal homeostasis, including the accumulation of metal ions in the plaques and an increase of iron in the cortex, have been well documented but the mechanisms involved are poorly understood.

Objective: In this study, we compared the metal content in the plaques and the iron speciation in the cortex of three mouse models, two of which show neurodegeneration (5xFAD and Tg-SwDI/NOS2 (CVN) and one that shows very little neurodegeneration (PSAPP).

Methods: The Fe, Cu, and Zn contents and speciation were determined using synchrotron X-ray fluorescence microscopy (XFM) and X-ray absorption spectroscopy (XAS), respectively.

Results: In the mouse models with reported significant neurodegeneration, we found that plaques contained ~25% more copper compared to the PSAPP mice. The iron content in the cortex increased at the late stage of the disease in all mouse models, but iron speciation remains unchanged.

Conclusions: The elevation of copper in the plaques and iron in the cortex is associated with AD severity, suggesting that these redox-active metal ions may be inducing oxidative damage and directly influencing neurodegeneration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4051362PMC
http://dx.doi.org/10.3233/BSI-130041DOI Listing

Publication Analysis

Top Keywords

mouse models
16
plaques iron
12
iron cortex
12
alzheimer's disease
8
metal ions
8
iron speciation
8
iron
6
plaques
5
cortex
5
neurodegeneration
5

Similar Publications

Objectives: PD15, a novel natural steroidal saponin extracted from the rhizomes of Paris delavayi Franchet, has demonstrated a strong cytotoxic effect against HepG2 and U87MG cells. However, its therapeutic effects on colorectal cancer (CRC) and the underlying molecular mechanisms remain unclear.

Methods: MTT assay, clonogenic assay, Hoechst 33258 staining, flow cytometry, molecular docking, and western blot were used to investigate the mechanism of PD15 in HCT116 cell lines.

View Article and Find Full Text PDF

Short-term starvation boosts anti-PD-L1 therapy by reshaping tumor-associated macrophages in hepatocellular carcinoma.

Hepatology

January 2025

Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China.

Background And Aims: Immune checkpoint inhibitors (ICIs) have revolutionized systemic hepatocellular carcinoma (HCC) treatment. Nevertheless, numerous patients are refractory to ICIs therapy. It is currently unknown whether diet therapies such as short-term starvation (STS) combined with ICIs can be used to treat HCC.

View Article and Find Full Text PDF

Exposure to influenza A virus (IAV), respiratory syncytial virus (RSV), and human metapneumovirus (hMPV) is well-known to increase the risk of pneumonia in humans. Type I interferon (IFN-I) is a hallmark response to acute viral infections, and alveolar macrophages (AMs) constitute the first line of airway defense against opportunistic bacteria. Our study reveals that virus-induced IFN-I receptor (IFNAR1) signaling directly impairs AM-dependent antibacterial protection.

View Article and Find Full Text PDF

Sleep alterations have been described in several neurodegenerative diseases yet are currently poorly characterized in amyotrophic lateral sclerosis (ALS). This study investigates sleep macroarchitecture and related hypothalamic signaling disruptions in ALS. Using polysomnography, we found that both patients with ALS as well as asymptomatic and mutation carriers exhibited increased wakefulness and reduced non-rapid eye movement sleep.

View Article and Find Full Text PDF

Primary mitochondrial disorders are most often caused by deleterious mutations in the mitochondrial DNA (mtDNA). Here, we used a mitochondrial DddA-derived cytosine base editor (DdCBE) to introduce a compensatory edit in a mouse model that carries the pathological mutation in the mitochondrial transfer RNA (tRNA) alanine (mt-tRNA) gene. Because the original m.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!