Monitoring cellular bioenergetic pathways provides the basis for a detailed understanding of the physiological state of a cell culture. Therefore, it is widely used as a tool amongst others in the field of in vitro toxicology. The resulting metabolic information allows for performing in vitro toxicology assays for assessing drug-induced toxicity. In this study, we demonstrate the value of a microsystem for the fully automated detection of drug-induced changes in cellular viability by continuous monitoring of the metabolic activity over several days. To this end, glucose consumption and lactate secretion of a hepatic tumor cell line were continuously measured using microfluidically addressed electrochemical sensors. Adapting enzyme-based electrochemical flat-plate sensors, originally designed for human whole-blood samples, to their use with cell culture medium supersedes the common manual and laborious colorimetric assays and off-line operated external measurement systems. The cells were exposed to different concentrations of the mitochondrial inhibitor rotenone and the cellular response was analyzed by detecting changes in the rates of the glucose and lactate metabolism. Thus, the system provides real-time information on drug-induced liver injury in vitro.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4032397PMC
http://dx.doi.org/10.1063/1.4876639DOI Listing

Publication Analysis

Top Keywords

cell culture
12
glucose lactate
8
vitro toxicology
8
long-term microfluidic
4
microfluidic glucose
4
lactate monitoring
4
monitoring hepatic
4
cell
4
hepatic cell
4
culture monitoring
4

Similar Publications

Background And Aims: Hepatitis B virus (HBV) is prevalent worldwide and is difficult to eradicate. Current treatment strategies for chronic hepatitis B ultimately seek to achieve functional cure (FC); however, the factors contributing to FC remain unclear. We aimed to investigate the gut microbiota profiles of patients with chronic hepatitis B who achieved FC.

View Article and Find Full Text PDF

Emerging Frontiers in Colorectal Cancer Therapy: From Targeted Molecules to Immunomodulatory Breakthroughs and Cell-Based Approaches.

Dig Dis Sci

January 2025

Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Yeman St, Chamran Expressway, P.O. Box 19857-17413, Tehran, Iran.

Colorectal cancer (CRC) is ranked as the second leading cause of cancer-related deaths globally, necessitating urgent advancements in therapeutic approaches. The emergence of groundbreaking therapies, including chimeric antigen receptor-T (CAR-T) cell therapies, oncolytic viruses, and immune checkpoint inhibitors, marks a transformative era in oncology. These innovative modalities, tailored to individual genetic and molecular profiles, hold the promise of significantly enhancing patient outcomes.

View Article and Find Full Text PDF

Mouse embryonic fibroblasts (MEFs) have been widely used as feeder cells in embryonic stem cell cultures because they can mimic the embryonic microenvironment. Milk fat globule-epidermal growth factor 8 (MFGE8) is expressed during mouse gonadal development, 10.5-13.

View Article and Find Full Text PDF

High-throughput measurement of cellular traction forces at the nanoscale remains a significant challenge in mechanobiology, limiting our understanding of how cells interact with their microenvironment. Here, we present a novel technique for fabricating protein nanopatterns in standard multiwell microplate formats (96/384-wells), enabling the high-throughput quantification of cellular forces using DNA tension gauge tethers (TGTs) amplified by CRISPR-Cas12a. Our method employs sparse colloidal lithography to create nanopatterned surfaces with feature sizes ranging from sub 100 to 800 nm on transparent, planar, and fully PEGylated substrates.

View Article and Find Full Text PDF

The efficient isolation and molecular analysis of circulating tumor cells (CTCs) from whole blood at single-cell level are crucial for understanding tumor metastasis and developing personalized treatments. The viability of isolated cells is the key prerequisite for the downstream molecular analysis, especially for RNA sequencing. This study develops a laser-induced forward transfer -assisted microfiltration system (LIFT-AMFS) for high-viability CTC enrichment and retrieval from whole blood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!