Bdellovibrio bacteriovorus is a predator bacterial species found in the environment and within the human gut, able to attack Gram-negative prey. Cystic fibrosis (CF) is a genetic disease which usually presents lung colonization by Pseudomonas aeruginosa or Staphylococcus aureus biofilms. Here, we investigated the predatory behavior of B. bacteriovorus against these two pathogenic species with: (1) broth culture; (2) "static" biofilms; (3) field emission scanning electron microscope (FESEM); (4) "flow" biofilms; (5) zymographic technique. We had the first evidence of B. bacteriovorus survival with a Gram-positive prey, revealing a direct cell-to-cell contact with S. aureus and a new "epibiotic" foraging strategy imaged with FESEM. Mean attaching time of HD100 to S. aureus cells was 185 s, while "static" and "flow" S. aureus biofilms were reduced by 74 (at 24 h) and 46% (at 20 h), respectively. Furthermore, zymograms showed a differential bacteriolytic activity exerted by the B. bacteriovorus lysates on P. aeruginosa and S. aureus. The dual foraging system against Gram-negative (periplasmic) and Gram-positive (epibiotic) prey could suggest the use of B. bacteriovorus as a "living antibiotic" in CF, even if further studies are required to simulate its in vivo predatory behavior.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4046265 | PMC |
http://dx.doi.org/10.3389/fmicb.2014.00280 | DOI Listing |
Front Microbiol
December 2024
Institute of Modern Aquaculture Science and Engineering (IMASE), Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, China.
Introduction: The intricate habitats of aquatic organisms, coupled with the prevalence of pathogens, contribute to a high incidence of various diseases, particularly bacterial infections. Consequently, the formulation of sustainable and effective disease management strategies is crucial for the thriving aquaculture sector.
Methods And Results: In this investigation, a strain of , designated , was isolated from a freshwater fish pond.
Arch Microbiol
December 2024
National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
Bdellovibrio bacteriovorus, an obligate predator of Gram-negative bacteria, has emerged as a promising natural antibiotic to combat the escalating threat of antibiotic resistance. Plaque forming units (PFU) counting is commonly used to determine the viable numbers of B. bacteriovorus.
View Article and Find Full Text PDFInfect Dis Rep
July 2024
School of Medicine, University of Crete, 71003 Heraklion, Greece.
Antimicrobial resistance (AMR) is an increasing problem worldwide, with significant associated morbidity and mortality. Given the slow production of new antimicrobials, non-antimicrobial methods for treating infections with significant AMR are required. This review examines the potential of predatory bacteria to combat infectious diseases, particularly those caused by pathogens with AMR.
View Article and Find Full Text PDFAdv Mater
October 2024
Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
Drug-resistant pathogens significantly threaten human health and life. Simply killing drug-resistant pathogens cannot effectively eliminate their threat since the drug-resistant genes (DRGs) released from dead drug-resistant pathogens are difficult to eliminate and can further spread via horizontal gene transfer, leading to the spread of drug resistance. The development of antibacterial materials with sterilization and DRGs cleavage activities is highly crucial.
View Article and Find Full Text PDFmBio
August 2024
Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
Unlabelled: The bacterial predator is considered to be obligatorily prey (host)-dependent (H-D), and thus unable to form biofilms. However, spontaneous host-independent (H-I) variants grow axenically and can form robust biofilms. A screen of 350 H-I mutants revealed that single mutations in stator genes or were sufficient to generate flagellar motility-defective H-I strains able to adhere to surfaces but unable to develop biofilms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!