The construction of a quantum computer remains a fundamental scientific and technological challenge because of the influence of unavoidable noise. Quantum states and operations can be protected from errors through the use of protocols for quantum computing with faulty components. We present a quantum error-correcting code in which one qubit is encoded in entangled states distributed over seven trapped-ion qubits. The code can detect one bit flip error, one phase flip error, or a combined error of both, regardless on which of the qubits they occur. We applied sequences of gate operations on the encoded qubit to explore its computational capabilities. This seven-qubit code represents a fully functional instance of a topologically encoded qubit, or color code, and opens a route toward fault-tolerant quantum computing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.1253742 | DOI Listing |
Nat Commun
January 2025
Quantum Research Center, Technology Innovation Institute, Abu Dhabi, UAE.
Quantum computers hold the promise of more efficient combinatorial optimization solvers, which could be game-changing for a broad range of applications. However, a bottleneck for materializing such advantages is that, in order to challenge classical algorithms in practice, mainstream approaches require a number of qubits prohibitively large for near-term hardware. Here we introduce a variational solver for MaxCut problems over binary variables using only n qubits, with tunable k > 1.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Inria Paris, Quandela, 7 Rue Léonard de Vinci, 91300 Massy, France.
Given some group G of logical gates, for instance the Clifford group, what are the quantum encodings for which these logical gates can be implemented by simple physical operations, described by some physical representation of G? We study this question by constructing a general form of such encoding maps. For instance, we recover that the ⟦5,1,3⟧ and Steane codes admit transversal implementations of the binary tetrahedral and binary octahedral groups, respectively. For bosonic encodings, we show how to obtain the GKP and cat qudit encodings by considering the appropriate groups, and essentially the simplest physical implementations.
View Article and Find Full Text PDFSci Rep
December 2024
Departamento de Física, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911, Leganés, Spain.
Considering a universal deep neural network organized as a series of nested qubit rotations, accomplished by adjustable data re-uploads we analyze its expressivity. This ability to approximate continuous functions in regression tasks is quantified making use of a partial Fourier decomposition of the generated output and systematically benchmarked with the aid of a teacher-student scheme. While the maximal expressive power increases with the depth of the network and the number of qubits, it is fundamentally bounded by the data encoding mechanism.
View Article and Find Full Text PDFData Brief
December 2024
Department of Electrical and Computer Engineering, University of Victoria, Victoria, BC V8W 2Y2, Canada.
Quantum field lens coding algorithm (QF-LCA) dataset is useful for simulating systems and predict system events with high probability. This is achieved by computing QF lens distance-based variables associated to event probabilities from the dataset produced by field lenses that encode system states on a quantum level. The probability of a state transition (ST), doubles in prediction values at the decoding step, e.
View Article and Find Full Text PDFPhys Rev Lett
November 2024
Henan Key Laboratory of Quantum Information and Cryptography, Zhengzhou, Henan 450000, China.
We implement an experiment on a photonic quantum processor establishing efficacy of the elementary quantum system in classical information storage. The advantage is established by considering a class of simple bipartite games played with the communication resource qubit and classical bit (c bit), respectively. Conventional wisdom, supported by the no-go theorems of Holevo and Frenkel-Weiner, suggests that such a quantum advantage is unattainable when the sender and receiver share randomness or classical correlations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!