The selective, oxidative functionalization of ethane, a significant component of shale gas, to products such as ethylene or ethanol at low temperatures and pressures remains a significant challenge. Herein we report that ethane is efficiently and selectively functionalized to the ethanol ester of H2SO4, ethyl bisulfate (EtOSO3H) as the initial product, with the Pt(II) "Periana-Catalytica" catalyst in 98% sulfuric acid. A subsequent organic reaction selectively generates isethionic acid bisulfate ester (HO3S-CH2-CH2-OSO3H, ITA). In contrast to the modest 3-5 times faster rate typically observed in electrophilic CH activation of higher alkanes, ethane CH functionalization was found to be ~100 times faster than that of methane. Experiment and quantum-mechanical calculations reveal that this unexpectedly large increase in rate is the result of a fundamentally different catalytic cycle in which ethane CH activation (and not platinum oxidation as for methane) is now turnover limiting. Facile Pt(II)-Et functionalization was determined to occur via a low energy β-hydride elimination pathway (which is not available for methane) to generate ethylene and a Pt(II)-hydride, which is then rapidly oxidized by H2SO4 to regenerate Pt(II)-X2. A rapid, non-Pt-catalyzed reaction of formed ethylene with the hot, concentrated H2SO4 solvent cleanly generate EtOSO3H as the initial product, which further reacts with the H2SO4 solvent to generate ITA.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja504368rDOI Listing

Publication Analysis

Top Keywords

times faster
12
functionalization ethane
8
etoso3h initial
8
initial product
8
h2so4 solvent
8
ethane
5
mechanistic change
4
change 100
4
100 times
4
functionalization
4

Similar Publications

Programmable Food-Derived Peptide Coassembly Strategies for Boosting Targeted Colitis Therapy by Enhancing Oral Bioavailability and Restoring Gut Microenvironment Homeostasis.

ACS Nano

January 2025

Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China.

Orally targeting nanostrategies of multiple nutraceuticals have attracted increasing attention in ulcerative colitis (UC) therapy for superior patient compliance, cost-effectiveness, and biocompatibility. However, the actual targeting delivery and bioefficacy of nutraceuticals are extremely restricted by their poor solubility, interior gastrointestinal retention, and base permeability. Herein, we developed controllable colon-targeting nanoparticles (NPs) composed of a quaternary ammonium chitosan (HTCC) shell and succinic acid-modified γ-cyclodextrin (SACD) core for precise UC treatment.

View Article and Find Full Text PDF

Hydrogen bonding blues: Vibrational spectroscopy of the TIP3P water model.

J Chem Phys

January 2025

Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, USA.

The computational spectroscopy of water has proven to be a powerful tool for probing the structure and dynamics of chemical systems and for providing atomistic insight into experimental vibrational spectroscopic results. However, such calculations have been limited for biochemical systems due to the lack of empirical vibrational frequency maps for the TIP3P water model, which is used in many popular biomolecular force fields. Here, we develop an empirical map for the TIP3P model and evaluate its efficacy for reproducing the experimental vibrational spectroscopy of water.

View Article and Find Full Text PDF

The Biomedical Applications of Artificial Intelligence: An Overview of Decades of Research.

J Drug Target

January 2025

Sunirmal Bhattacharjee, Bharat Pharmaceutical Technology, Amtali, Agartala, Tripura, India.

A significant area of computer science called artificial intelligence (AI) is successfully applied to the analysis of intricate biological data and the extraction of substantial associations from datasets for a variety of biomedical uses. AI has attracted significant interest in biomedical research due to its features: (i) better patient care through early diagnosis and detection; (ii) enhanced workflow; (iii) lowering medical errors; (v) lowering medical costs; (vi) reducing morbidity and mortality; (vii) enhancing performance; (viii) enhancing precision; and (ix) time efficiency. Quantitative metrics are crucial for evaluating AI implementations, providing insights, enabling informed decisions, and measuring the impact of AI-driven initiatives, thereby enhancing transparency, accountability, and overall impact.

View Article and Find Full Text PDF

Carbon-based nanofibers are critical materials with broad applications in industries such as energy, filtration, and biomedical devices. Polyacrylonitrile (PAN) is a primary precursor for carbon nanofibers, but conventional electrospinning techniques typically operate at low production rates of 0.1-1 mL/h from a single spinneret, limiting scalability.

View Article and Find Full Text PDF

Feeling good, approaching the positive.

Front Psychol

December 2024

Institute of Cognitive Science, University of Osnabrück, Osnabrück, Germany.

Introduction: Approach and avoidance behaviors have been extensively studied in cognitive science as a fundamental aspect of human motivation and decision-making. The Approach-Avoidance Bias (AAB) refers to the tendency to approach positive stimuli faster than negative stimuli and to avoid negative stimuli faster than positive ones. Affect and arousal in involved individuals are assumed to play a crucial role in the AAB but many questions in that regard remain open.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!