Aims: To investigate the effect of the overexpression of erg1 gene of Trichoderma harzianum CECT 2413 (T34) on the Trichoderma-plant interactions and in the biocontrol ability of this fungus.
Methods And Results: Transformants of T34 strain overexpressing erg1 gene did not show effect on the ergosterol level, although a drastic decrease in the squalene level was observed in the transformants at 96 h of growth. During interaction with plants, the erg1 overexpression resulted in a reduction of the priming ability of several tomato defence-related genes belonging to the salicylate pathway, and also of the TomLoxA gene, which is related to the jasmonate pathway. Interestingly, other jasmonate-related genes, such as PINI and PINII, were slightly induced. The erg1 overexpressed transformants also showed a reduced ability to colonize tomato roots.
Conclusions: The ergosterol biosynthetic pathway might play an important role in regulating Trichoderma-plant interactions, although this role does not seem to be restricted to the final product; instead, other intermediates such as squalene, whose role in the Trichoderma-plant interaction has not been characterized, would also play an important role.
Significance And Impact Of The Study: The functional analysis of genes involved in the synthesis of ergosterol could provide additional strategies to improve the ability of biocontrol of the Trichoderma strains and their interaction with plants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jam.12574 | DOI Listing |
Int Immunopharmacol
January 2025
Department of Urology, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China. Electronic address:
Purpose: Hypoxia ischemia (HI) injury is an inevitable risk factor in kidney transplantation. The inflammatory response is crucial in HI. Long non-coding RNAs (lncRNAs) are known to regulate inflammation and immunity, but their role in HI remains unclear.
View Article and Find Full Text PDFJ Ethnopharmacol
December 2024
Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, PR China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences Kunming, 650201, PR China. Electronic address:
Ethnopharmacological Relevance: Pachysandra axillaris Franch., a traditional herbal medicine in Yunnan, has been used to treat traumatic injuries and stomach ailments, some of which were related to microbial infections in conventional applications, but, to the best of our knowledge, the antifungal bioactivity of this plant and its main antifungal components have not been previously reported.
Aim Of The Study: To identify the antifungal compounds of P.
mSphere
December 2024
Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
The widespread use of azole antifungals in agriculture and clinical settings has led to serious drug resistance. Overexpression of the azole drug target 14α-demethylase ERG11 (CYP51) is the most common fungal resistance mechanism. However, the presence of additional regulatory proteins in the transcriptional response of is not yet fully elucidated.
View Article and Find Full Text PDFCell Mol Life Sci
November 2024
School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK.
Int J Mol Sci
November 2024
National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!