Excessive production of superoxide (O2(-)) in the central nervous system has been widely implicated in the pathogenesis of cardiovascular diseases, including chronic heart failure and hypertension. In an attempt to overcome the failed therapeutic impact of currently available antioxidants in cardiovascular disease, we developed a nanomedicine-based delivery system for the O2(-)-scavenging enzyme copper/zinc superoxide dismutase (CuZnSOD), in which CuZnSOD protein is electrostatically bound to a poly-l-lysine (PLL50)-polyethylene glycol (PEG) block copolymer to form a CuZnSOD nanozyme. Various formulations of CuZnSOD nanozyme are covalently stabilized by either reducible or nonreducible crosslinked bonds between the PLL50-PEG polymers. Herein, we tested the hypothesis that PLL50-PEG CuZnSOD nanozyme delivers active CuZnSOD protein to neurons and decreases blood pressure in a mouse model of angiotensin II (AngII)-dependent hypertension. As determined by electron paramagnetic resonance spectroscopy, nanozymes retain full SOD enzymatic activity compared to native CuZnSOD protein. Nonreducible CuZnSOD nanozyme delivers active CuZnSOD protein to central neurons in culture (CATH.a neurons) without inducing significant neuronal toxicity. Furthermore, in vivo studies conducted in adult male C57BL/6 mice demonstrate that hypertension established by chronic subcutaneous infusion of AngII is significantly attenuated for up to 7 days after a single intracerebroventricular injection of nonreducible nanozyme. These data indicate the efficacy of nonreducible PLL50-PEG CuZnSOD nanozyme in counteracting excessive O2(-) and decreasing blood pressure in AngII-dependent hypertensive mice after central administration. Additionally, this study supports the further development of PLL50-PEG CuZnSOD nanozyme as an antioxidant-based therapeutic option for hypertension.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4116739 | PMC |
http://dx.doi.org/10.1016/j.freeradbiomed.2014.06.001 | DOI Listing |
Molecules
August 2024
Centro de Química-Vila Real (CQ-VR) and Chemistry Department, University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal.
Electrogenerated hydrophilic carbon (EHC) nanomaterials emerge as a highly attractive option for mimicking the activity of the superoxide dismutase enzyme (SOD) due to their exceptional water solubility and electron-transfer reversibility. Motivated by these properties, the EHC nanomaterials were utilized to assess the effect of ionic strength on the SOD-like activity. Superoxide anion radicals (O) were generated using the hypoxanthine-xanthine oxidase system, with nitro blue tetrazolium chloride serving as the detecting system.
View Article and Find Full Text PDFInorg Chem
June 2023
School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China.
Superoxide dismutase (SOD) mimics are limited by a single active center, and their performance is difficult to achieve the activity level of natural SOD. Herein, we exhibit the coordination construction of different SOD active centers (Cu and Mn) and structural regulation of framework carbonization in MOFs. The obtained catalytic activity and excellent biocompatibility are comparable to Cu/Zn-SOD.
View Article and Find Full Text PDFRSC Adv
December 2019
ICMol, Departamento de Química Inorgánica, Universidad de Valencia C/Catedrático José Beltrán 2 46980 Paterna Spain
Two binucleating hezaaza macrocycles containing a pyridinol spacer have been prepared and characterised. Protonation studies indicate the deprotonation of the phenol group at relatively low pH values with the concomitant occurrence of a keto-enolic equilibrium. These ligands readily form binuclear Cu and Zn complexes as denoted by potentiometric and spectroscopic studies.
View Article and Find Full Text PDFACS Nano
October 2019
Division of Hematology, Department of Internal Medicine , University of Texas-McGovern Medical School, 6431 Fannin Street , Houston , Texas 77030 , United States.
The superoxide dismutase-like activity of poly(ethylene glycolated) hydrophilic carbon clusters (PEG-HCCs), anthracite and bituminous graphene quantum dots (PEG-aGQDs and PEG-bGQDs, respectively), and two fullerene carbon nanozymes, tris malonyl-C fullerene (C3) and polyhydroxylated-C fullerene (C-OH), were compared using direct optical stopped-flow kinetic measurements, together with three native superoxide dismutases (SODs), CuZnSOD, MnSOD, and FeSOD, at both pH 12.7 and 8.5.
View Article and Find Full Text PDFJ Control Release
September 2015
Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Laboratory for Chemical Design of Bionanomaterials, Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow 117234, Russia. Electronic address:
Copper/zinc superoxide dismutase (CuZnSOD; SOD1) is widely considered as a potential therapeutic candidate for pathologies involving oxidative stress, but its application has been greatly hindered by delivery issues. In our previous study, nanoformulated SOD1 (cl-nanozyme) was shown to decrease infarct volume and improve sensorimotor functions after a single intravenous (IV) injection in a rat middle cerebral artery occlusion (MCAO) model of ischemia/reperfusion (I/R) injury (stroke). However, it remained unclear how cl-nanozyme was able to deliver SOD1 to the brain and exert therapeutic efficacy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!