Volcanic conduit migration over a basement landslide at Mount Etna (Italy).

Sci Rep

Istituto Nazionale di Geofisica e Vulcanologia, via di Vigna Murata 605, 00143 Roma, Italy.

Published: June 2014

The flanks of volcanoes may slide in response to the loading of the edifice on a weak basement, magma push, and/or to tectonic stress. However, examples of stratovolcanoes emplaced on active landslides are lacking and the possible effects on the volcano dynamics unknown. Here, we use aeromagnetic data to construct a three-dimensional model of the clay-rich basement of Etna volcano (Italy). We provide evidence for a large stratovolcano growing on a pre-existing basement landslide and show that the eastern Etna flank, which slides toward the sea irrespective of volcanic activity, moves coherently with the underlying landslide. The filling of the landslide depression by lava flows through time allows the formation of a stiffness barrier, which is responsible for the long-term migration of the magma pathways from the coast to the present-day Etna summit. These unexpected results provide a new interpretation clue on the causes of the volcanic instability processes and of the mechanisms of deflection and migration of volcanic conduits.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4055905PMC
http://dx.doi.org/10.1038/srep05293DOI Listing

Publication Analysis

Top Keywords

basement landslide
8
volcanic
4
volcanic conduit
4
conduit migration
4
basement
4
migration basement
4
landslide
4
landslide mount
4
etna
4
mount etna
4

Similar Publications

Due to the fluidity of the loose medium inside the waste dump slope, the traditional monitoring system cannot fully reflect the misalignment and slip between particles inside the medium, and it is also difficult to capture the precursor information of the slip of the loose accumulation body. To reveal the dynamic evolution process of the slope instability of the waste dump slope, the coupling test system of the slope instability of the waste dump slope was used to carry out the study of the acoustic emission characteristics of the slope instability dynamic response of the dump slope under the action of vibration, and to quantitatively analyse the staged characteristics of the acoustic emission parameter evolution of the dump slope under the action of different vibration frequencies and its instability initiation node. The results show that with the increase of vibration frequency, the damage mode of the slope model gradually changes from sliding of small particles to large-scale landslides, and presents the stage process of "vibration compaction → vibration equilibrium → dynamic instability"; Under the action of low-frequency and high-amplitude, the slope model mainly shows that the tiny particles and the basement gravel slip, which is difficult to capture with the naked eye, while under the action of high-frequency and low-amplitude, the slope surface is damaged in a large area, and the overall model is unstable; The dynamic instability of the waste dump slope is accompanied by obvious acoustic emission activities, and the changes of the characteristic parameters of acoustic emission reveal, to a certain extent, the evolution of the internal state of the slope in the process of dynamic instability of the waste dump slope and its stage characteristics; The amplitude and energy efficiency of acoustic emission in the time domain show obvious fractal characteristics in the dynamic instability of the waste dump slope.

View Article and Find Full Text PDF

This study focuses on effectively controlling landslides at the boundary of a soft rock open-pit dump while ensuring safe increases in the dump's capacity and optimal utilization of external dump sites. To achieve this, the adoption of a local filling method for the dump base is proposed. By leveraging the concepts of limit equilibrium theory and equivalent shear strength parameters, the mathematical expression of the slope stability coefficient in the Morgenstern-Price method is derived and improved.

View Article and Find Full Text PDF

Volcanic conduit migration over a basement landslide at Mount Etna (Italy).

Sci Rep

June 2014

Istituto Nazionale di Geofisica e Vulcanologia, via di Vigna Murata 605, 00143 Roma, Italy.

The flanks of volcanoes may slide in response to the loading of the edifice on a weak basement, magma push, and/or to tectonic stress. However, examples of stratovolcanoes emplaced on active landslides are lacking and the possible effects on the volcano dynamics unknown. Here, we use aeromagnetic data to construct a three-dimensional model of the clay-rich basement of Etna volcano (Italy).

View Article and Find Full Text PDF

Triggering the landslide: The tumor-promotional effects of myofibroblasts.

Exp Cell Res

July 2013

Mayo Clinic Cancer Center, Jacksonville, FL 32225, United States. Electronic address:

Cancers become significantly more dangerous when the tumor progresses from in situ, or contained, to an invasive state, in which the cancer cells acquire the ability to pass through the surrounding basement membrane (BM), a specialized extracellular matrix (ECM) that provides structure and contextual information to the underlying tissue. While the majority of tumors are carcinomas, derived from epithelial cells, it is the stromal cells surrounding the epithelial-derived tumor cells, including fibroblasts and myofibroblasts, vasculature, and immune cells, that are largely responsible for the production and remodeling of the ECM. Here, we will discuss myofibroblasts as key effectors of tumor progression, focusing on recent advances in breast and pancreatic carcinoma, showing how myofibroblasts may function properly in normal tissue remodeling and wound-healing processes, how in the tumor context they can drive cancer invasion and metastasis, and how the pathogenic functions of myofibroblasts may be targeted therapeutically.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!