Purpose: Inflammation participates centrally in all stages of atherosclerosis (AS), which begins with pro-inflammatory processes and inflammatory changes in the endothelium, related to lipid metabolism. MicroRNA (miRNA) inhibition of inflammation related to SIRT1 has been shown to be a promising therapeutic approach for AS. However, the mechanism of action is unknown.

Methods: We investigated whether miRNAs regulate the SIRT1 and its downstream SREBP-lipogenesis-cholesterogenesis metabolic pathway in human umbilical vein endothelial cells (HUVECs). HUVECs were transfected with miR-132 mimics and inhibitors, and then treated with or without tumor necrosis factor α (TNFα). The effects of miR-132 on pro-inflammatory processes, proliferation and apoptosis were assessed.

Results: We identified that the relative 3' UTR luciferase activities of SIRT1 were significantly decreased in miR-132 transfected HUVECs (0.338 ± 0.036) compared to control (P = 0.000). miR-132 inhibited SIRT1 expression of mRNA level in HUVECs (0.53 ± 0.06) (P < 0.01) as well as proteins of SIRT1. mRNA expression and protein levels of SREBP (0.45 ± 0.07), fatty acid synthase (FASN) (0.55 ± 0.09) and 3-hydroxy-3-methylglutaryl CoA reductase (HMGCR) (0.62 ± 0.08) (P < 0.01), which are downstream regulated genes, were reduced in HUVECs by miR-132. MiR-132 promoted pro-inflammatory processes and apoptosis of HUVECs induced by TNF-α, and inhibited its proliferation, viability and migration.

Conclusions: SIRT1 mRNAs are direct targets of miR-132. miR-132 controls lipogenesis and cholesterogenesis in HUVECs by inhibiting SIRT1 and SREBP-1c expression and their downstream regulated genes, including FASN and HMGCR. Inhibition of SIRT1 by miR-132 was associated with lipid metabolism-dependent pro-inflammatory processes in HUVECs. The newly identified miRNA, miR-132 represents a novel targeting mechanism for AS therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10557-014-6533-xDOI Listing

Publication Analysis

Top Keywords

pro-inflammatory processes
12
metabolic pathway
8
mir-132
5
sirt1
5
mir-132 inhibits
4
inhibits expression
4
expression sirt1
4
sirt1 induces
4
induces pro-inflammatory
4
processes vascular
4

Similar Publications

Efficacy of Immunotherapy for Complex Regional Pain Syndrome: A Narrative Review.

Curr Pain Headache Rep

January 2025

Department of Anesthesiology, Critical Care, and Pain Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA.

Purpose Of Review: Complex regional pain syndrome (CRPS) is a chronic condition characterized by disproportional pain typically affecting an extremity. Management of CRPS is centered around specific symptomatology, which tends to be a combination of autonomic dysfunction, nociceptive sensitization, chronic inflammation, and/or motor dysfunction. Targeting the autoimmune component of CRPS provides a way to both symptomatically treat as well as minimize progression of CRPS.

View Article and Find Full Text PDF

Crisdesalazine alleviates inflammation in an experimental autoimmune encephalomyelitis multiple sclerosis mouse model by regulating the immune system.

BMC Neurosci

January 2025

Laboratory of Veterinary Internal Medicine, Department of Clinical Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.

Microglia/macrophages participate in the development of and recovery from experimental autoimmune encephalomyelitis (EAE), and the macrophage M1 (pro-inflammatory)/M2 (anti-inflammatory) phase transition is involved in EAE disease progression. We evaluated the efficacy of crisdesalazine (a novel microsomal prostaglandin E2 synthase-1 inhibitor) in an EAE model, including its immune-regulating potency in lipopolysaccharide-stimulated macrophages, and its neuroprotective effects in a macrophage-neuronal co-culture system. Crisdesalazine significantly alleviated clinical symptoms, inhibited inflammatory cell infiltration and demyelination in the spinal cord, and altered the phase of microglial/macrophage and regulatory T cells.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.

Background: Estrogens, such as 17β-estradiol, are the primary female sex hormones predominantly synthesized by mature ovarian follicular cells. The natural exhaustion of ovarian follicular cells during menopause causes a rapid decline in endogenous estrogen levels. This decline in estrogen levels is associated with an increase in chronic, age-related pathologies, including inflammation in the brain.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

PCM Consulting, Pathways Connectivity Maps Inc., Mountain View, CA, USA.

Background: High-throughput assays have attracted significant attention in Alzheimer's Disease (AD) research, especially for enabling rapid diagnostics screening for factors at the molecular level contributing to the disease recurrence. With advances in laboratory automation, there is a growing need for quality pre-clinical data. Assays such as Microarrays, Proteomics, or AI are all dependent on high-quality input data that serve as a starting point.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) stands as the predominant form of dementia worldwide. The pathogenesis of AD encompasses elevated brain levels of amyloid-β oligomers (AβOs), recognized as central neurotoxins linked to AD. The accumulation of AβOs is neurotoxic, resulting in detrimental effects such as synapse loss, mitochondrial dysfunction, and impairment of proteostasis mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!