It is believed that human primary visual cortex (V1) increases activity with increasing temporal frequency of a visual stimulus. Two kinds of visual stimulus were used in the previous studies, one is patterned-flash stimulus with a fixed onset period and an increasing average luminance with the increase of temporal frequency, the other is contrast reversing flickering checkerboard or grating with a constant average luminance across different temporal frequencies. That hemodynamic responses change as a function of reversal frequency of contrast reversing checkerboard is at odds with neurophysiological studies in animals and neuroimaging studies in humans. In the present study, we addressed the relationship between reversal frequency of contrast reversing checkerboard and hemodynamic response in human V1 using an event-related experimental paradigm and found that the transient characteristics of blood oxygenation level dependent response in human V1 depended very little on the reversal frequency of a contrast reversing checkerboard.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4055643 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0099547 | PLOS |
Discov Oncol
January 2025
Department of Clinical Laboratory, Affiliated Hospital of Guangdong Medical University, No. 57 South Renmin Avenue, Xiashan District, Zhanjiang, 524001, People's Republic of China.
Objective: Circulating protein level ratios (CPLRs) may play a crucial role in tumor progression and drug resistance by mediating interactions within the tumor microenvironment. This study aims to investigate the causal associations between CPLRs and papillary thyroid cancer (PTC), focusing on their potential implications in drug resistance mechanisms.
Methods: Genetic data for 2821 CPLRs were obtained from the GWAS and FinnGen databases.
J Cosmet Dermatol
January 2025
Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.
Background: The skin microbiota, a complex community of microorganisms residing on the skin, plays a crucial role in maintaining skin health and overall homeostasis. Recent research has suggested that alterations in the composition and function of the skin microbiota may influence the aging process. However, the causal relationships between specific skin microbiota and biological aging remain unclear.
View Article and Find Full Text PDFActa Pharmacol Sin
January 2025
National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
Sorting nexins (SNXs) as the key regulators of sorting cargo proteins are involved in diverse diseases. SNXs can form the specific reverse vesicle transport complex (SNXs-retromer) with vacuolar protein sortings (VPSs) to sort and modulate recovery and degradation of cargo proteins. Our previous study has shown that SNX3-retromer promotes both STAT3 activation and nuclear translocation in cardiomyocytes, suggesting that SNX3 might be a critical regulator in the heart.
View Article and Find Full Text PDFJ Neurosci
January 2025
Leibniz Institute for Neurobiology (LIN), Department of Genetics of Learning and Memory, Magdeburg, 39118 Germany
For a proper representation of the causal structure of the world, it is adaptive to consider both evidence for and evidence against causality. To take punishment as an example, the causality of a stimulus is unlikely if there is a temporal gap before punishment is received, but causality is credible if the stimulus immediately precedes punishment. In contrast, causality can be ruled out if the punishment occurred first.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Arizona, Tucson, AZ, USA.
Background: Cerebral microvascular dysfunction and nitro-oxidative stress are present in patients with Alzheimer's disease (AD) and may contribute to disease progression and severity. A pro-nitro-oxidative environment can lead to post-translational modifications of ion channels central to microvascular regulation in the brain, including the large conductance Ca-activated K channels (BK). Nitro-oxidative modulation of BK can resulting in decreased activity and vascular hyper-contractility, thus compromising neurovascular regulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!