Pro-chondrogenic effect of miR-221 and slug depletion in human MSCs.

Stem Cell Rev Rep

Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Via Fossato di Mortara, 74, 44121, Ferrara, Italy.

Published: December 2014

In this study we have inhibited the expression of two negative regulators of chondrogenesis, Slug transcription factor (TF) and the small non-coding single stranded RNA microRNA-221 (miR-221), in human mesenchymal stem cells (MSCs). Our aim was test a new approach to guide the cells toward a chondrocyte - like phenotype, without the employment of differentiating agents, in the prospect of their clinical applications for cell-based cartilage tissue engineering. We have characterized these manipulated cells by gene expression analysis at the RNA and protein levels. We demonstrated that decreased miR-221 or Slug induced an increase of chondrogenic markers, including collagen type II (Col2A1), and the positive chondrogenic TFs Sox9 and TRPS1. Slug and TRPS1 are not direct targets of miR-221 since their expression was not affected by miR-221 content. Further, we showed by gene expression and Chromatin Immunoprecipitation analyses that i. miR-221 is positively regulated by Slug in hMSCs, where Slug and miR-221 high levels hamper cell differentiation, and ii. TRPS1 contributes to maintaining low levels of miR-221, both in hMSCs committed toward chondrogenesis by Slug depletion and in chondrocytes, where the low levels of miR-221 and Slug allow a chondrogenic phenotype.Taken together, our data may be relevant both to understand yet unknown miRNA - TF regulatory loops in cartilage biology and to establish new strategies based on a siRNA approach for cartilage tissue engineering.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12015-014-9532-1DOI Listing

Publication Analysis

Top Keywords

mir-221 slug
12
slug
8
slug depletion
8
chondrogenesis slug
8
mir-221
8
cartilage tissue
8
tissue engineering
8
gene expression
8
low levels
8
levels mir-221
8

Similar Publications

The stemness and metastasis of cancer cells are crucial features in determining cancer progression. Argonaute-2 (AGO2) overexpression was reported to be associated with microRNA (miRNA) biogenesis, supporting the self-renewal and differentiation characteristics of cancer stem cells (CSCs). Ursolic acid (UA), a triterpene compound, has multiple biological functions, including anticancer activity.

View Article and Find Full Text PDF

SLUG/HIF1-α/miR-221 regulatory circuit in endometrial cancer.

Gene

August 2019

Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy. Electronic address:

Background And Purpose: The pathogenesis of endometrial cancer (EC) involves many regulatory pathways including transcriptional regulatory networks supported by transcription factors and microRNAs only in part known. The aim of this retrospective study was to explore the possible correlation in the EC microenvironment between master regulators of complex phenomena such as steroid responsiveness through estrogen receptor alpha (ERα) and progesterone receptor (PR), epithelial-to-mesenchymal transition (supported by SLUG transcription factor), hypoxia (with hypoxia inducible factor-1 alpha, HIF-1α), and obesity that has been recognized as a EC risk factor.

Methods: Formalin-Fixed Paraffin-Embedded (FFPE) blocks from University of Ferrara Pathology Archive were used and allocated into 2 groups according to their immunohistochemical positivity to ERα and PR, distinguishing the samples with a more benign prognosis (ERα/PR) from those with a poorer prognosis (ERα/PR).

View Article and Find Full Text PDF

Aim: To search for additional molecular-biological markers of cancer stem cell (CSC) involved in the development of intra-tumor heterogeneity for the detection of features of the breast cancer (BC) pathogenesis.

Materials And Methods: Expression of estrogen receptors (ER), progesterone receptors (PR), Her2/neu, E- and N-cadherin, CD24, CD44, Bcl-2, Bax, Slug, P-gp, glutathione-S-transferase (GST) and metallothionein in cell lines was determined by the immunocytochemical method. Expression of ER, PR, Her2/neu, CD24 and CD44 in the surgical material of BC patients were determined by the immunohistochemical method.

View Article and Find Full Text PDF

Slug-upregulated miR-221 promotes breast cancer progression through suppressing E-cadherin expression.

Sci Rep

May 2016

State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences (NAILS), Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China.

It is generally regarded that E-cadherin is downregulated during tumorigenesis via Snail/Slug-mediated E-cadherin transcriptional reduction. However, this transcriptional suppressive mechanism cannot explain the failure of producing E-cadherin protein in metastatic breast cancer cells after overexpressing E-cadherin mRNA. Here we reveal a novel mechanism that E-cadherin is post-transcriptionally regulated by Slug-promoted miR-221, which serves as an additional blocker for E-cadherin expression in metastatic tumor cells.

View Article and Find Full Text PDF

Pro-chondrogenic effect of miR-221 and slug depletion in human MSCs.

Stem Cell Rev Rep

December 2014

Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Via Fossato di Mortara, 74, 44121, Ferrara, Italy.

In this study we have inhibited the expression of two negative regulators of chondrogenesis, Slug transcription factor (TF) and the small non-coding single stranded RNA microRNA-221 (miR-221), in human mesenchymal stem cells (MSCs). Our aim was test a new approach to guide the cells toward a chondrocyte - like phenotype, without the employment of differentiating agents, in the prospect of their clinical applications for cell-based cartilage tissue engineering. We have characterized these manipulated cells by gene expression analysis at the RNA and protein levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!