We present a versatile illumination system where white light emitting diodes are coupled through a planar waveguide to periodically patterned extraction features at the focal plane of a two dimensional lenslet array. Adjusting the position of the lenslet array allows control over both the directionality and divergence of the emitted beam. We describe an analytic design process, and show optimal designs can achieve high luminous emittance (1.3x10⁴ lux) over a 2x2 foot aperture with over 75% optical efficiency while simultaneously allowing beam steering over ± 60° and divergence control from ± 5° to fully hemispherical output. Finally, we present experimental results of a prototype system which validate the design model.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.22.00A742DOI Listing

Publication Analysis

Top Keywords

planar waveguide
8
directionality divergence
8
lenslet array
8
waveguide led
4
led illuminator
4
illuminator controlled
4
controlled directionality
4
divergence versatile
4
versatile illumination
4
illumination system
4

Similar Publications

Tunable Filters Using Defected Ground Structures at Millimeter-Wave Frequencies.

Micromachines (Basel)

December 2024

Center of Excellence for Thin-Film Research and Surface Engineering (CETRASE), Department of Electrical and Computer Engineering, University of Dayton, Dayton, OH 45469, USA.

This paper explores the potential of phase change materials (PCM) for dynamically tuning the frequency response of a dumbbell u-slot defected ground structure (DGS)-based band stop filter. The DGSs are designed using co-planar waveguide (CPW) line structure on top of a barium strontium titanate (BaSrTiO) (BST) thin film. BST film is used as the high-dielectric material for the planar DGS.

View Article and Find Full Text PDF

A Comparison of the Optical Properties of Fibre-Based Luminescent Solar Concentrators and Transparent Wood Towards Sustainable Waveguides.

Luminescence

January 2025

Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India.

Aiming at net-zero emissions, most international and national policies focus on sustainable development goals. Hence, there is an immediate need for replacing carbon-intensive materials with biomaterials. In this respect, this article presents a road-map for moving from polymeric to sustainable waveguides in optical devices.

View Article and Find Full Text PDF

Achieving desired characteristic impedances in customized coplanar waveguide transmission line design.

MethodsX

December 2024

Department of Electrical Engineering, College of Engineering Al-Hussein Bin Talal, University, Ma'an 71111, Jordan.

Coplanar waveguide (CPW) transmission lines are valued for their planar design, low radiation, and minimized signal loss, but controlling their characteristic impedance remains a challenge. This study employs the Taguchi method, a statistical approach, to optimize the characteristic impedance by adjusting eight control factors: track width, track thickness, gap width, dielectric height, backplane thickness, conductor material conductivity, dielectric conductivity, and operational frequency. The analysis evaluates these factors across three levels to find optimal conditions, with dielectric height and track width identified as most influential.

View Article and Find Full Text PDF

Fused silica has become an interesting alternative to silicon for millimeter-wave (mmWave) applications. Unfortunately, there are a few reports on the measurement of fused silica's permittivity above 110 GHz that use electrical rather than optical methods. Given that mmWave applications use electrical circuits, additional electrical data would be useful to industry.

View Article and Find Full Text PDF

Femtosecond laser inscription in a ytterbium-doped silver-containing phosphate glass is demonstrated by achieving 3D highly localized laser-induced silver photochemistry. The produced fluorescent silver nanoclusters lead to high optical contrast in the visible range, showing that the coinsertion of Yb ions is not detrimental to the silver-based photochemistry. We demonstrate efficient energy transfer from these silver nanoclusters to the rare-earth Yb ions, leading to near-IR background-free fluorescence emission.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!