The copper(i) complexes containing phosphorus donor ligands such as diazadiphosphetidine, cis-{(o-OCH2C5H4N)P(μ-N(t)Bu)}2 (1) and aminobis(phosphonite), C6H5N{P(OC6H3(OMe-o)(C3H5-p))2}2 (2, PNP), have been synthesized. Treatment of 1 with copper iodide afforded the 1D coordination polymer [{Cu(μ-I)}2{(o-OCH2C5H4N)P(μ-N(t)Bu)}2]n (3). Treatment of 3 with 2,2'-bipyridine (bpy) and 1,10-phenanthroline (phen) produced mixed-ligand complexes [(L)2Cu2{(o-OCH2C5H4N)P(μ-N(t)Bu)}2][I]2 (4 L = bpy; 5 L = phen) in good yields. The reaction of 2 with copper iodide yielded a rare tetranuclear copper complex [(CuI)2C6H5N(PR2)2]2 (6), which on subsequent treatment with various pyridyl ligands produced binuclear complexes [{Cu(μ-I)(py)}2(μ-PNP)] (7), [Cu2(μ-I)(bpy)2(μ-PNP)]I (8), [Cu2(μ-I)I(bpy)(μ-PNP)] (9), [Cu2(phen)(bpy)(μ-PNP)](OTf)2 (10), [Cu2(μ-I)I(phen)(μ-PNP)] (11) and [Cu2(μ-I)(phen)2(μ-PNP)]I (12), in an almost quantitative yield. The new copper(i) complexes (4, 5 and 7-12) were tested for anti-cancer activity against three human tumor cell lines. Compounds 5, 10 and 12 showed in vitro antitumor activity 5-7 fold higher than cisplatin, the most used anticancer drug. These three most potent compounds (5, 10 and 12) were chosen for detailed study to understand their mechanism of action. The copper(i) compounds studied in the present investigation were found to inhibit tumor cell growth by arresting cells at the S-phase of the cell cycle. The characteristic nuclear morphology of treated cells showed signs of DNA damage. The experimental evidence clearly indicated that these compounds initiated apoptosis, which is mediated through the p53 pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c4dt00832d | DOI Listing |
Chem Catal
November 2024
Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.
The use of visible light to drive chemical transformations has a history spanning over a century. However, the development of photo-redox catalysts to efficiently harness light energy is a more recent advancement, evolving over the past two decades. While ruthenium and iridium-based photocatalysts dominate due to their photostability, long excited-state lifetimes, and high redox potentials, concerns about sustainability and cost have shifted attention to first-row transition metals.
View Article and Find Full Text PDFInorg Chem
December 2024
Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark.
Pyridine-2-yl-sulfonyl-quinolin-8-yl-amide (psq) has produced the first sulfonamidato-bridged dicopper(I) complex, {Cu[κ-(μ-κ:κ-psq)]} containing the rhombic Cu(I)N core. The single crystal X-ray structure of this complex shows that two anionic psq ligands straddle the metal atoms via bridging sulfonamide N atoms to give a Cu···Cu distance of 2.9593(8) Å.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, P. R. China.
Although two-coordinate Cu(I) complexes are highly promising low-cost emitters for organic light-emitting diodes (OLEDs), the exposed metal center in the linear coordination geometry makes them suffer from poor stability. Herein, we describe a strategy to develop stable carbene-Cu-amide complexes through installing intramolecular noncovalent Cu⋅⋅⋅H interactions. The employment of 13H-dibenzo[a,i]carbazole (DBC) as the amide ligand leads to short Cu⋅⋅⋅H distances in addition to the Cu-N coordination bond.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
Catalytic asymmetric α-alkylation of simple carboxylic acid derivatives is a challenging issue due to the difficulties in achieving high catalytic efficiency and controlling the enantioselectivity. Herein, by using a copper(I)-()-DTBM-SEGPHOS complex as a catalyst and 2-acylimidazoles as pronucleophiles, a general method for the catalytic asymmetric α-alkylation of simple carboxylic acid derivatives is accomplished. Various alkyl electrophiles, including allyl bromides, benzyl bromides, propargyl bromide, and unactivated alkyl sulfonates, serve as efficient alkylation reagents.
View Article and Find Full Text PDFACS Omega
November 2024
College of Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States.
Copper(I) sulfide (CuS) has electrical, optical, and thermoelectric properties that make it a promising material for a variety of applications, including energy conversion and antibacterial coatings. Nevertheless, the current synthesis and morphological modulation of CuS typically focuses on thermolysis of the copper and sulfur precursors, is procedurally complex, and demands expensive equipment. In this article, a facile, high-yield, three-step, low-temperature aqueous synthesis alternative for CuS nanoplates is introduced.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!