We present work at the Steward Observatory Solar Lab on a high concentration photovoltaic system in which sunlight focused by a single large paraboloidal mirror powers many small triple-junction cells. The optical system is of the XRX-Köhler type, comprising the primary reflector (X) and a ball lens (R) at the focus that reimages the primary reflector onto an array of small reflectors (X) that apportion the light to the cells. We present a design methodology that provides generous tolerance to mis-pointing, uniform illumination across individual cells, minimal optical loss and even distribution between cells, for efficient series connection. An operational prototype has been constructed with a 3.3m x 3.3m square primary reflector of 2m focal length powering 36 actively cooled triple-junction cells at 1200x concentration (geometric). The measured end-to-end system conversion efficiency is 28%, including the parasitic loss of the active cooling system. Efficiency ~32% is projected for the next system.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.22.00A211DOI Listing

Publication Analysis

Top Keywords

primary reflector
12
high concentration
8
triple-junction cells
8
system
6
cells
5
dish-based high
4
concentration system
4
system köhler
4
köhler optics
4
optics work
4

Similar Publications

Variation in lanternfish (Myctophidae) photophore structure: A comprehensive comparative analysis.

PLoS One

November 2024

Department of Ichthyology, Division of Vertebrate Zoology, American Museum of Natural History, New York, New York, United States of America.

The deep-sea open ocean habitat (below 200 m depth) is comprised of little-to-no light, near freezing temperatures, and vastly connected stratified waters. Bioluminescence is often linked to the success and diversification of fishes in these dark deep-sea habitats, which are host to many species-rich and morphologically diverse clades. Fish bioluminescence takes many forms and is used in a variety of behaviors including counterillumination, prey detection and luring, communication, and predator avoidance.

View Article and Find Full Text PDF

Enhancing Reconfigurable Intelligent Surface-Enabled Cognitive Radio Networks for Sixth Generation and Beyond: Performance Analysis and Parameter Optimization.

Sensors (Basel)

July 2024

Department of Intelligent Mechatronics Engineering and Convergence Engineering for Intelligent Drone, Sejong University, Seoul 05006, Republic of Korea.

In this paper, we propose a novel system integrating reconfigurable intelligent surfaces (RISs) with cognitive radio (CR) technology, presenting a forward-looking solution aligned with the evolving standards of 6G and beyond networks. The proposed RIS-assisted CR networks operate with a base station (BS) transmitting signals to two users, the primary user (PU) and secondary user (SU), through direct and reflected signal paths, respectively. Our mathematical analysis focuses on deriving expressions for SU in the RIS-assisted CR system, validated through Monte Carlo simulations.

View Article and Find Full Text PDF

Carbonates constitute a significant proportion of the world's hydrocarbon reserves, accounting for approximately 43%. Despite their substantial potential, accurately characterizing these reserves is a challenging task due to their complex and anisotropic nature. In the upper Indus basin of Pakistan, Eocene carbonates exhibit strong production capabilities.

View Article and Find Full Text PDF

The GAMA Microreactor is a low-power nuclear power plant dedicated for remote area with a power output of 300 kWe. The primary characteristics of the GAMA Microreactor are its system compactness, design simplicity, and safe operation without moving parts. The fuel is uranium hydride powder, which works simultaneously as a moderator, contained within a stainless-steel vessel and surrounded by a graphite reflector.

View Article and Find Full Text PDF

In this article, porous GaN distributed Bragg reflectors (DBRs) were fabricated by epitaxy of undoped/doped multilayers followed by electrochemical etching. We present backscattered electron scanning electron microscopy (BSE-SEM) for sub-surface plan-view imaging, enabling efficient, non-destructive pore morphology characterization. In mesoporous GaN DBRs, BSE-SEM images the same branching pores and Voronoi-like domains as scanning transmission electron microscopy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!