Recent experiments by Rao et al. (Nature, 2013, 500, 435-439) indicate that recombination of triplet charge-separated states is suppressed in organic polymer-fullerene based bulk-heterojunction (BHJ) photovoltaic cells exhibiting a high degree of crystallinity in the fullerene phase relative to systems with more disorder. In this paper, we use a series of Frenkel-exciton lattice models to rationalize these results in terms of wave-function localization, interface geometry, and density of states. In one-dimensional co-linear and co-facial models of the interface, increasing local energetic disorder in one phase localizes the interfacial triplet charge-transfer ((3)CT) states and increases the rate at which these states relax to form lower-energy triplet excitons. In two dimensional BHJ models, energetic disorder within the fullerene phase plays little role in further localizing states pinned to the interface. However, inhomogeneous broadening introduces strong coupling between the interfacial (3)CT and nearby fullerene triplet excitons and can enhance the decay of these states in systems with higher degrees of energetic disorder.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4cp01776eDOI Listing

Publication Analysis

Top Keywords

energetic disorder
12
fullerene phase
8
triplet excitons
8
states
6
disorder
5
triplet
5
disorder controls
4
controls kinetics
4
kinetics triplet
4
triplet charge
4

Similar Publications

Epilepsy is a chronic neurological disorder that affects nearly 50 million people worldwide. Experimental evidence suggests that epileptic neurons are linked to the endocannabinoid system and that inhibition of the FAAH enzyme could have neuroprotective effects by increasing the levels of endogenous endocannabinoid anandamide. In this context, the use of macamides as therapeutic agents in neurological diseases has increased in recent years.

View Article and Find Full Text PDF

Exploring neutrophils as therapeutic targets in cardiometabolic diseases.

Trends Pharmacol Sci

January 2025

Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy. Electronic address:

Current therapies for diabetes and atherosclerotic cardiovascular diseases (ACVDs) mainly target metabolic risk factors, but often fall short in addressing systemic inflammation, a key driver of disease onset and progression. Advances in our understanding of the biology of neutrophils, the cells that are principally involved in inflammatory situations, have highlighted their pivotal role in cardiometabolic diseases. Yet, neutrophils can reprogram their immune-metabolic functions based on the energetic substrates available, thus influencing both tissue homeostasis and the resolution of inflammation.

View Article and Find Full Text PDF

Semaglutide administration protects cardiomyocytes in db/db mice via energetic improvement and mitochondrial quality control.

Acta Pharmacol Sin

January 2025

Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.

Diabetic cardiomyopathy causes end-stage heart failure, resulting in high morbidity and mortality in type 2 diabetes mellitus (T2DM) patients. Long-term treatment targeting metabolism is an emerging field in the treatment of diabetic cardiomyopathy. Semaglutide, an agonist of the glucagon-like peptide 1 receptor, is clinically approved for the treatment of T2DM and provides cardiac benefits in patients.

View Article and Find Full Text PDF

Objective: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by significant heterogeneity among patients. 23Na MRI maps abnormal sodium homeostasis that reflects metabolic alterations and energetic failure contributing to the neurodegenerative process. In this study, we investigated disease severity at the individual level in ALS patients using brain 23Na MRI.

View Article and Find Full Text PDF

Pulmonary function in swimmers exposed to disinfection by-products: a narrative review.

Front Physiol

January 2025

Department of Sport Medicine and Traumatology, Poznan Univeristy of Physical Education, Poznań, Poland.

Swimming produces many psychophysiological effects, including blood, hormonal, enzymatic, pulmonary, cardiovascular and energetic adaptations. However, asthma and allergies are becoming increasingly prevalent medical issues among elite endurance-trained swimmers, where exercise-induced asthma or bronchospasm is frequently reported. Heavy endurance swimming training, especially under adverse conditions, stresses the airway mucosa, leading to inflammatory changes, as observed in induced sputum in competitive swimmers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!