Objective: This study investigated the effect of different drying methods of dentin surface on the bonding efficacy of self-adhesive resin cements (SRCs).
Materials And Methods: Three SRCs (RelyX U200, RU; Maxcem Elite, ME; and BisCem, BC) and one resin-modified glass ionomer cement (RelyX Luting 2, RL) were used. The characteristics of the materials were evaluated using thermogravimetric analysis and surface roughness and contact angle measurements. Human dentin surfaces were finished with 600-grit silicon carbide paper and assigned to three groups according to these drying methods: ethanol dehydration, drying by waiting for 10 s after blot-drying and blot-drying. The four cements were used for luting composite overlays to the dried dentin. After 24 h storage at 37°C and 100% relative humidity, stick-shaped specimens with a cross-sectional area of 0.8 mm(2) were prepared and stressed to failure in tension at a crosshead speed of 0.5 mm/min (n = 27). Failure modes of fractured specimens were assessed by optical and scanning electron microscopy.
Results: RL was the most hydrophilic, followed by BC and ME and then RU. All the luting cements luted to ethanol-dehydrated dentin showed zero bond strengths. For the three SRCs, drying by waiting produced higher microtensile bond strengths than blot-drying. RU showed the best bonding performance in the above two dentin conditions. RL showed significantly higher bond strength in blot-drying condition than in drying-by-waiting (p < 0.001).
Conclusions: This study suggests that dentin surface moisture has a crucial effect on the bond strength of SRCs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/00016357.2014.926024 | DOI Listing |
Pharmaceutics
December 2024
AbbVie Deutschland GmbH & Co. KG, Knollstraße, 67061 Ludwigshafen am Rhein, Germany.
Atomization plays a key role in spray drying, a process widely used in the pharmaceutical, chemical, biological, and food and beverage industries. In the pharmaceutical industry, spray drying is particularly important in the preparation of amorphous solid dispersions, which enhance the bioavailability of active pharmaceutical ingredients when mixed with a polymer. In this study, a 3D-printed adaptation of a commercial spray dryer nozzle (PHARMA-SD PSD-1, GEA Group AG) was used to investigate the atomization of PVP-VA 64 polymer solutions under varying flow conditions using high-speed diffuse back-illumination.
View Article and Find Full Text PDFPharmaceutics
December 2024
School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK.
Background: Spray drying, whilst a popularly employed technique for powder formulations, has limited applications for large-scale proliposome manufacture.
Objectives: Thus, the aim of this study was to investigate spray drying parameters, such as inlet temperature (80, 120, 160, and 200 °C), airflow rate (357, 473, and 601 L/h) and pump feed rate (5, 15, and 25%), for individual carbohydrate carriers (trehalose, lactose monohydrate (LMH), and mannitol) for 24 spray-dried (SD) formulations (F1-F24).
Methods: Following optimization, the SD parameters were trialed on proliposome formulations based on the same carriers and named as spray-dried proliposome (SDP) formulations.
Pharmaceutics
November 2024
Laboratory of Process Analysis and Design, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechneiou St. Zografou Campus, 15780 Athens, Greece.
Spray freeze drying (SFD) represents an emerging drying technique designed to produce a wide range of pharmaceuticals, foods, and active components with high quality and enhanced stability due to their unique structural characteristics. This method combines the advantages of the well-established techniques of freeze drying (FD) and spray drying (SD) while overcoming their challenges related to high process temperatures and durations. This is why SFD has experienced steady growth in recent years regarding not only the research interest, which is reflected by the increasing number of literature articles, but most importantly, the expanded market adoption, particularly in the pharmaceutical sector.
View Article and Find Full Text PDFPharmaceutics
November 2024
Pharmacy Discipline, School of Clinical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia.
This study explores the development and characterization of spray-dried composite microparticles consisting of levofloxacin (LVX, a broad-spectrum antibiotic), and ambroxol (AMB, a mucolytic agent that has antibacterial and antibiofilm properties), for the intended application of the drug against lower respiratory tract infections (LRTIs). A range of LVX to AMB mass ratios (1:1, 1:0.5, and 1:0.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Fujian Laboratory for Rice Germplasm Innovation and Molecular Breeding, Biotechnology Research Institute, Institute of Crop Sciences, Fujian Academy of Agricultural Sciences, Fuzhou 350001, China.
Germinated whole seeds possess elevated levels of bioactive nutrients; however, their application is hindered by several constraints. The germination process is typically time-consuming, and germinated seeds present challenges in terms of storage and transportation compared to dry seeds. This study introduces a novel processing method for rice, termed prolonged priming (PLP), aiming to combine the benefits of germinated and dry seeds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!