In this paper, an electro-optical cavity-dumped 1.06 μm laser using YVO4/Nd:GdVO4 composite crystal under 808 nm diode-laser pumping was reported. Theoretical calculations showed that the temperature distribution in YVO4/Nd:GdVO4 crystal was lower than that in GdVO4/Nd:GdVO4 and Nd:GdVO4 crystals under the same conditions. A constant 3.8±0.3 ns pulse width was obtained and the repetition rate could reach up to 50 kHz with a maximum average output power of 5.6 W and slope efficiency of 40.7%, corresponding to a peak power of 31.1 kW.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.53.003081 | DOI Listing |
In this paper, an electro-optical cavity-dumped 1.06 μm laser using YVO4/Nd:GdVO4 composite crystal under 808 nm diode-laser pumping was reported. Theoretical calculations showed that the temperature distribution in YVO4/Nd:GdVO4 crystal was lower than that in GdVO4/Nd:GdVO4 and Nd:GdVO4 crystals under the same conditions.
View Article and Find Full Text PDFAppl Opt
June 2013
Information Optoelectronics Research Institute, Harbin Institute of Technology at Weihai, Weihai, China.
An electro-optical Q-switched RF-excited Z-fold CO(2) waveguide laser was designed, which can output a Q-switched laser and a cavity-dumped laser synchronously. The build-up time method is presented to stabilize the laser frequency. A closed-loop control system was designed to keep the laser oscillating at the peak of the gain curve by measuring the pulse build-up time continuously and controlling the cavity length.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!