Short-wave infrared (SWIR) imaging sensors are increasingly being used in surveillance and reconnaissance systems due to the reduced scatter in haze and the spectral response of materials over this wavelength range. Typically SWIR images have been provided either as full motion video from framing panchromatic systems or as spectral data cubes from line-scanning hyperspectral or multispectral systems. Here, we describe and characterize a system that bridges this divide, providing nine-band spectral images at 30 Hz. The system integrates a custom array of filters onto a commercial SWIR InGaAs array. We measure the filter placement and spectral response. We demonstrate a simple simulation technique to facilitate optimization of band selection for future sensors.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.53.000C45DOI Listing

Publication Analysis

Top Keywords

short-wave infrared
8
spectral response
8
video rate
4
rate nine-band
4
nine-band multispectral
4
multispectral short-wave
4
infrared sensor
4
sensor short-wave
4
infrared swir
4
swir imaging
4

Similar Publications

Supercontinuum generation in scintillator crystals.

Sci Rep

January 2025

Laser Research Center, Vilnius University, Saulėtekio Avenue 10, LT-10223, Vilnius, Lithuania.

We present a comparative experimental study of supercontinuum generation in undoped scintillator crystals: bismuth germanate (BGO), yttrium orthosilicate (YSO), lutetium oxyorthosilicate (LSO), lutetium yttrium oxyorthosilicate (LYSO) and gadolinium gallium garnet (GGG), pumped by 180 fs fundamental harmonic pulses of an amplified Yb:KGW laser. In addition to these materials, experiments in yttrium aluminium garnet (YAG), potassium gadolinium tungstate (KGW) and lithium tantalate (LT) were performed under identical experimental settings (focusing geometry and sample thickness), which served for straightforward comparison of supercontinuum generation performances. The threshold and optimal (that produces optimized red-shifted spectral extent) pump pulse energies for supercontinuum generation were evaluated from detailed measurements of spectral broadening dynamics.

View Article and Find Full Text PDF

Short-wave infrared (SWIR) phosphor-converted light-emitting diode (LED) technology holds promise for advancing broadband light sources. Despite the potential, limited research has delved into the energy transfer mechanism from sharp-line to broadband emission in SWIR phosphors, which remains underexplored. Herein, we demonstrate bright SWIR phosphors achieved through Cr/Ni energy transfer in LiGaAl O.

View Article and Find Full Text PDF

Robust low threshold full-color upconversion lasing in rare-earth activated nanocrystal-in-glass microcavity.

Light Sci Appl

January 2025

State Key Laboratory of Luminescent Materials and Devices, and Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Materials Science and Engineering, South China University of Technology, 510640, Guangzhou, China.

Visible light microlasers are essential building blocks for integrated photonics. However, achieving low-threshold (μW), continuous-wave (CW) visible light lasing at room temperature (RT) has been a challenge because of the formidable requirement of population inversion at short wavelengths. Rare-earth (RE)-activated microcavities, featuring high-quality factor (Q) and small mode volume of whispering gallery modes, offer a great opportunity for achieving infrared-to-visible upconversion (UC) lasing.

View Article and Find Full Text PDF

Purpose: The emulsification of silicone oil (SO) remains poorly understood. In the present study, we investigated the physical properties of unused pharmaceutical SO samples under various conditions. Moreover, clinical correlations with the patients' SO samples were assessed.

View Article and Find Full Text PDF

Non-destructive assessment of chilling injury in red pepper powder using short-wave-infrared and XGBoost algorithm.

Food Chem

December 2024

Food Safety and Distribution Research Group, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; Smart Food Manufacturing Project Group, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea. Electronic address:

This study aimed to evaluate red pepper powder quality by the extent of chilling injury and develop a method for detecting chilling injury-affected pepper powder. Pepper powder produced from chilling injury-affected pepper fruits exhibited increased bitter amino acids, microbial counts, and biogenic amines and decreased sweetness index and organic acid levels. These quality deteriorations indicate the need to detect chilling injury in pepper powders.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!