The support vector machine (SVM) is a widely used approach for high-dimensional data classification. Traditionally, SVMs use features from the spectral bands of hyperspectral images with each feature contributing equally to the classification. In practical applications, although affected by noise, slight contributions can also be obtained from deteriorated bands. Thus, compared with feature reduction or equal assignment of weights to all the features, feature weighting is a trade-off choice. In this study, we examined two approaches to assigning weights to SVM features to increase the overall classification accuracy: (1) "CSC-SVM" refers to a support vector machine with compactness and a separation coefficient feature weighting algorithm, and (2) "SE-SVM" refers to a support vector machine with a similarity entropy feature weighting algorithm. Analyses were conducted on a public data set with nine selected land-cover classes. In comparison with traditional SVMs and other classical feature weighting algorithms, the proposed weighting algorithms increase the overall classification accuracy, and even better results could be obtained with few training samples.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.53.002839DOI Listing

Publication Analysis

Top Keywords

feature weighting
20
support vector
16
vector machine
16
weighting algorithms
12
hyperspectral images
8
increase classification
8
classification accuracy
8
refers support
8
weighting algorithm
8
feature
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!