Laser materials processing with ultra-short pulses allows very precise and high quality results with a minimum extent of the thermally affected zone. However, with increasing average laser power and repetition rates the so-called heat accumulation effect becomes a considerable issue. The following discussion presents a comprehensive analytical treatment of multi-pulse processing and reveals the basic mechanisms of heat accumulation and its consequence for the resulting processing quality. The theoretical findings can explain the experimental results achieved when drilling microholes in CrNi-steel and for cutting of CFRP. As a consequence of the presented considerations, an estimate for the maximum applicable average power for ultra-shorts pulsed laser materials processing for a given pulse repetition rate is derived.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.22.011312 | DOI Listing |
Biochem Pharmacol
January 2025
Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240 PR China; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240 PR China. Electronic address:
Multiple organ dysfunction syndrome (MODS) is the major cause of mortality of patients in intensive care units. The elusive mechanisms of tissue damage in MODS and limited therapeutic options encourage us to seek effective therapies to MODS. PANoptosis has recently been proven to be the key player in both heat stress and sepsis-mediated MODS.
View Article and Find Full Text PDFForensic Sci Res
December 2024
Córdoba, Argentina.
Unlabelled: The characteristics of commercially available thermochromic ink pens have been studied and described since their appearance in 2006. The wide variety of brands and models now available warrants further study using an expanded sample size, to differentiate the general characteristics from specific characteristics. Herein, the ink strokes of 15 pens purchased in the province of Córdoba, Argentina were studied.
View Article and Find Full Text PDFNat Commun
January 2025
Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China.
Hydroxide exchange membrane (HEM) water electrolysis is promising for green hydrogen production due to its low cost and excellent performance. However, HEM often has insufficient stability in strong alkaline solutions, particularly under in-situ electrolysis operation conditions, hindering its commercialization. In this study, we discover that the in-situ stability of HEM is primarily impaired by the locally accumulated heat in HEM due to its low thermal conductivity.
View Article and Find Full Text PDFSci Prog
January 2025
National Fire Research Institute, Asan-si, Republic of Korea.
Firefighters are exposed to the risk of burns at fire scenes. In 2020, the National Fire Agency of the Republic of Korea surveyed 50,527 firefighters and identified 242 burn-related incidents. The body parts affected by these burns were the hands (28.
View Article and Find Full Text PDFWater Environ Res
January 2025
Agrobiology Laboratory, Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry (LAMMC), Lithuania.
A comparative pot study was performed to assess the toxic effects of copper (Cu) and/or zinc (Zn) contaminated wastewater (WW) irrigation on the growth, physiology, and element concentration of wheat grown for two months. The treatments included irrigation with uncontaminated wastewater (WW) as control, Cu-contaminated WW (CuWW), Zn-contaminated WW (ZnWW), and Cu + Zn contaminated WW (CuZnWW) in a completely randomized design. Compared to ZnWW, irrigation with CuWW or CuZnWW had severe effects on growth, physiology, and mineral absorption by wheat.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!