We have demonstrated a broadband waveguide polariser with high extinction ratio on a polymer optical waveguide coated with graphene oxide via the drop-casting method. The highest extinction ratio of nearly 40 dB is measured at 1590 nm, with a variation of 4.5 dB across a wavelength range from 1530 nm to 1630 nm, a ratio that is (to our knowledge) the highest reported for graphene-based waveguide polarisers to date. This result is achieved with a graphene oxide coating length along the propagation direction of only 1.3 mm and a bulk film thickness of 2.0 µm. The underlying principles of the strongly polarisation dependent propagation loss demonstrated have been studied and are attributed to the anisotropic complex dielectric function of graphene oxide bulk film.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.22.011090DOI Listing

Publication Analysis

Top Keywords

graphene oxide
12
waveguide polariser
8
extinction ratio
8
bulk film
8
graphene
4
graphene oxide-based
4
waveguide
4
oxide-based waveguide
4
polariser thin
4
thin film
4

Similar Publications

The adoption of carbon capture, utilization, and storage (CCUS) technology is increasingly prevalent, driven by the global initiative to conserve energy and reduce emissions. Nevertheless, CCUS has the potential to induce corrosion in equipment, particularly in high-pressure environments containing carbon dioxide (CO). Therefore, anti-corrosion protection is necessary for the metal utilized for CO production and storage equipment.

View Article and Find Full Text PDF

FTW SERS probes with Ag NCs-GO composite structure excited by evanescent wave for in situ detection of permethrin.

Anal Chim Acta

March 2025

Zhejiang Key Laboratory of Advanced Optical Functional Materials and Devices, Ningbo University, Ningbo, 315211, China; Engineering Research Center for Advanced Infrared Photoelectric Materials and Devices of Zhejiang Province, Ningbo University, Ningbo, 315211, China. Electronic address:

Background: Permethrin is a pesticide used to kill insects, and once used in excess, it poses a great threat to the environment and human health, therefore, it is necessary to realize the rapid and accurate detection of permethrin. Fiber optic surface enhanced Raman scattering (SERS) probes have the advantages of small volume and can be used for remote monitoring, which have great potential for application in achieving in-situ detection of pesticide residues.

Results: Fiber taper waist (FTW) SERS probes modified by silver nanocubes-graphene oxide (Ag NCs-GO) composite structures were prepared for in situ detection of permethrin in lake water.

View Article and Find Full Text PDF

Flexible sweat sensors play a crucial role in health monitoring and disease prevention by enabling real-time, non-invasive assessment of human physiological conditions. Sweat contains a variety of biomarkers, offering valuable insights into an individual's health status. In this study, we developed an advanced flexible electrochemical sensor featuring reduced graphene oxide (rGO)-based electrodes, modified with a composite material comprising nitrogen and sulfur co-doped holey graphene (HG) and MXene, with in-situ-grown TiO nanoparticles on the MXene.

View Article and Find Full Text PDF

A dual action electrochemical molecular imprinting sensor based on FeCu-MOF and RGO/PDA@MXene hybrid synergies for trace detection of ribavirin.

Food Chem

January 2025

Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, PR China. Electronic address:

In this study, we designed a molecularly imprinted electrochemical sensor based on the reduced graphene oxide/polydopamine@Mxene (RPM) and FeCu-MOF for the detection of antiviral drug ribavirin (RBV). The RPM composite enhances the active surface area and electron transport capacity of the sensor, and the incorporation of FeCu-MOF can not only further improve the catalytic performance of the material, but also enables the sensor to harness the electrical reduction signal of HO. Furthermore, we developed an optimized molecularly imprinted polymer via density functional theory (DFT) to enhance the sensor's specificity and sensitivity for RBV detection.

View Article and Find Full Text PDF

The broader use of botanical pesticides has been limited by shorter residual activity on plants, slower onset of action, and higher costs compared with conventional pesticides. These challenges could be overcome by the development of simple, cost-effective, and long-lasting preventive nanocomposites for botanical pesticides. In this study, we successfully developed a low-cost ethyl cellulose (EC)-based delivery system for the botanical pesticide osthole (OST), designed to provide extended preventive protection against infestations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!