A simple and universal method for the estimation of the intramolecular hydrogen bond (HB) energy (E(HB)) in hydroxycarbonyl aliphatic compounds is proposed by the application of the molecular tailoring approach (MTA) based on calculations at the second-order Møller-Plesset MP2 level. The calculation of EHB can be realized by the one optimization and three single point calculations of the energy for each compound with carbonyl and hydroxyl groups involved in HB. The intramolecular hydrogen bond energies estimated for 153 structures (of 102 compounds) ranged from 1.4 to 13.7 kcal/mol for systems without resonance-assisted hydrogen bonding (RAHB). To verify the method, we show the correlations of the energy (E(HB)) in six-, seven-, and eight-membered HB rings in the optimized multifunctional molecules with the usual geometry descriptors of hydrogen bonds. Moreover, topological parameters from the atoms in molecules (AIM) theory and the calculated infrared and proton NMR spectra are correlated. The effects of conjugation and π-electron delocalization, bifurcation, and cooperativity are discussed, along with the correlation between the strength and geometrical parameters of H bonding.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ci500107w | DOI Listing |
Chem Sci
January 2025
School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University Chongqing 401331 China
Atomically precise gold nanoclusters have shown great promise as model electrocatalysts in pivotal electrocatalytic processes such as the hydrogen evolution reaction (HER) and carbon dioxide reduction reaction (CORR). Although the influence of ligands on the electronic properties of these nanoclusters is well acknowledged, the ligand effects on their electrocatalytic performances have been rarely explored. Herein, using [Au(SR)] nanoclusters as a prototype model, we demonstrated the importance of ligand hydrophilicity hydrophobicity in modulating the interface dynamics and electrocatalytic performance.
View Article and Find Full Text PDFACS Phys Chem Au
January 2025
Departamento de Química, Universidade Federal de Santa Catarina, Campus Universitário Trindade, 88040-900 Florianópolis, SC, Brazil.
The present study elucidated the role of both hydrogen and halogen bonds, from an electronic structure perspective, in the anion recognition process by the [2]catenane () containing a moiety with hydrogen bond donors entangled with another macrocyclic halogen bond donor. Spherical and nonspherical anions have been employed. The roles of different σ-hole donors have also been considered.
View Article and Find Full Text PDFACS Phys Chem Au
January 2025
Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, São José dos Campos, 12247-014 São Paulo, Brazil.
The unique properties and versatile applications of natural deep eutectic solvents (NaDES) have sparked significant interest in the field of green chemistry. Comprised of natural components that form liquids at room temperature through strong noncovalent electrostatic interaction, these solvents are cost-effective, nontoxic, and versatile. Betaine chloride-based NaDES, in particular, have shown promise in biocatalysis and sugar extraction due to their excellent properties.
View Article and Find Full Text PDFACS Omega
January 2025
Applied Chemistry and Environment Laboratory, Applied Bioorganic Chemistry Team, Faculty of Science, Ibn Zohr University, Agadir 80000, Morocco.
The goal of this study was to synthesize and evaluate new antimicrobial compounds. We specifically focused on the development of 2,5-disubstituted tetrazole derivatives containing the O-methyl-2,3-O-isopropylidene-(D)-ribofuranoside groups through N-alkylation reactions. The synthesized compounds were characterized using H and C nuclear magnetic resonance (NMR) spectroscopy.
View Article and Find Full Text PDFACS Omega
January 2025
School of Bio-Chemical Engineering and Technology, Sirindhorn International Institute of Technology, Thammasat University, 99 Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand.
The integration of molecular docking and AM1 calculations has elucidated the complexation behavior of butylone enantiomers with methylated β-cyclodextrin derivatives. Our study reveals that butylone can adopt two distinct conformations within the β-cyclodextrin cavity, with one conformation being preferentially stabilized due to its favorable binding energy. This conformation preference is influenced by the methylation at the O2, O3, and O6 positions of β-cyclodextrin, which significantly affects complex stability and solvation properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!