AI Article Synopsis

  • Researchers are investigating the combination of nitrogen-vacancy (NV) centers in diamonds with optical networks to enhance large-scale entanglement.
  • The study focuses on the creation of gallium phosphide (GaP) structures on diamonds, achieving effective coupling between tiny GaP disk resonators and waveguides with a high quality factor.
  • This innovation lays the groundwork for scalable quantum technologies, facilitating on-chip photon manipulation for advancements in quantum information processing.

Article Abstract

Large-scale entanglement of nitrogen-vacancy (NV) centers in diamond will require integration of NV centers with optical networks. Toward this goal, we present the fabrication of single-crystalline gallium phosphide (GaP) resonator-waveguide coupled structures on diamond. We demonstrate coupling between 1 μm diameter GaP disk resonators and waveguides with a loaded Q factor of 3,800, and evaluate their potential for efficient photon collection if integrated with single photon emitters. This work opens a path toward scalable NV entanglement in the hybrid GaP/diamond platform, with the potential to integrate on-chip photon collection, switching, and detection for applications in quantum information processing.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.22.013555DOI Listing

Publication Analysis

Top Keywords

photon collection
8
waveguide-integrated single-crystalline
4
single-crystalline gap
4
gap resonators
4
resonators diamond
4
diamond large-scale
4
large-scale entanglement
4
entanglement nitrogen-vacancy
4
nitrogen-vacancy centers
4
centers diamond
4

Similar Publications

Introduction: The innate immune response is an important first checkpoint in the evolution of an infection. Although adaptive immunity is generally considered the immune component that retains antigenic memory, innate immune responses can also be affected by previous stimulations. This study evaluated the impact of vaccination on innate cell activation by TLR7/8 agonist R848, as well as seasonal variations.

View Article and Find Full Text PDF

Biological applications using multiphoton microscopy increasingly seek a larger field of view while maintaining sufficient temporal sampling to observe dynamic biological processes. Multiphoton imaging also requires high numerical aperture microscope objectives to realize efficient non-linear excitation and collection of fluorescence. This combination of low-magnification and high-numerical aperture poses a challenge for system design.

View Article and Find Full Text PDF

Optical neural implants allow neuroscientists to access deep brain regions, enabling to decipher complex patterns of neural activity. In this field, the use of optical fibers is rapidly increasing, and the ability to generate high-quality metal patterns on their non-planar surface would further extend their application. Here, we propose to use alternating metal shielding and dielectric confinement to engineer the mode-division properties of tapered optical fiber neural implants.

View Article and Find Full Text PDF

Principles of visual cortex excitatory microcircuit organization.

Innovation (Camb)

January 2025

Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal, QC H3G 1A4, Canada.

Synapse-specific connectivity and dynamics determine microcircuit function but are challenging to explore with classic paired recordings due to their low throughput. We therefore implemented optomapping, a ∼100-fold faster two-photon optogenetic method. In mouse primary visual cortex (V1), we optomapped 30,454 candidate inputs to reveal 1,790 excitatory inputs to pyramidal, basket, and Martinotti cells.

View Article and Find Full Text PDF

Attix free-air chamber correction factors computed using EGSnrc.

Med Phys

January 2025

Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA.

Background: A cylindrical free-air chamber, the Attix FAC, is used for absolute air-kerma measurements of low-energy photon beams at the University of Wisconsin Medical Radiation Research Center. Correction factors for air-kerma measurements of specific beams were determined in the 1990s. In order to measure air-kerma rates of beams in development, new correction factors must be computed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!