We report the generation of transform-limited, ~18 ps optical pulses from a fiber Bragg grating (FBG) stabilized semiconductor laser diode. Up to 7.2 pJ of pulse energy and a peak power of 400mW were achieved when operating at a repetition frequency of 832.6 MHz, a multiple of the cavity (diode + FBG) free spectral range (FSR). A small detuning in the repetition frequency resulted in broader optical pulses. We have shown experimentally the transition from a gain-switched regime of operation to mode-locked operation once the injection current modulation frequency is set to match a harmonic of the cavity FSR. The transition also results in a reduction in the timing jitter of the optical pulses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.22.013366 | DOI Listing |
Europace
January 2025
Division of Cardiology, McGill University Medical Center, Montreal, Quebec, Canada.
Background: Loss of bipolar electrograms immediately after pulsed field ablation (PFA) makes lesion durability assessment challenging.
Objective: The aim of this trial (NCT06700226) was to evaluate a novel ablation system that can optically predict lesion durability by detecting structural changes in the tissue during ablation.
Methods: Patients with paroxysmal atrial fibrillation underwent pulmonary vein isolation (PVI) using PFA (AblaView®, MedLumics).
Nanotechnology
January 2025
Walker Department of Mechanical Engineering, The University of Texas at Austin, 204 E. Dean Keeton St., Austin, Texas, 78712-1139, UNITED STATES.
Sapphire is an attractive material in photonic, optoelectronic, and transparent ceramic applications that stand to benefit from surface functionalization effects stemming from micro/nanostructures. Here we investigate the use of ultrafast lasers for fabricating nanostructures in sapphire by exploring the relationship between irradiation parameters, morphology change, and selective etching. In this approach an ultrafast laser pulse is focused on the sapphire substrate to change the crystalline morphology to amorphous or polycrystalline, which is characterized by examining different vibrational modes using Raman spectroscopy.
View Article and Find Full Text PDFUltrasound J
January 2025
Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal.
Background: There are significant discrepancies in the optic nerve sheath diameter (ONSD) reported in the literature. We aimed to determine the ultrasonographic imaging features of ONSD and ophthalmic vessels in a healthy population, using a standardized protocol, and to estimate the effect of demographics and positioning changes on imaging measurements.
Methods: We measured the mean values of the ONSD in supine and sitting position and the Doppler imaging parameters of the ophthalmic, central retinal and short posterior ciliary arteries.
Light Sci Appl
January 2025
Spin-Optics laboratory, St. Petersburg State University, St. Petersburg, 198504, Russia.
We introduce a novel neuromorphic network architecture based on a lattice of exciton-polariton condensates, intricately interconnected and energized through nonresonant optical pumping. The network employs a binary framework, where each neuron, facilitated by the spatial coherence of pairwise coupled condensates, performs binary operations. This coherence, emerging from the ballistic propagation of polaritons, ensures efficient, network-wide communication.
View Article and Find Full Text PDFNano Lett
January 2025
School of Materials and Energy or Electron Microscopy Centre of Lanzhou University, Lanzhou University, Lanzhou 730000, P. R. China.
The electric dipole in materials is closely associated with their electronic transport, optical properties, and mechanical behavior. Here, we have employed the differential phase contrast (DPC) technique of the scanning transmission electron microscopy technique (STEM) to directly analyze the local electric dipole at the sub-Angstrom scale. By utilizing DPC-STEM technology, we successfully visualized the ferroelectric polarization of van der Waals material 3R α-InSe and directly confirmed the dipole interlocking effect (DIE) between in-plane (IP) and out-of-plane (OOP) polarizations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!