Reliability of directional information in unsorted spikes and local field potentials recorded in human motor cortex.

J Neural Eng

School of Engineering, Brown University, Providence, RI, USA. Institute for Brain Science, Brown University, Providence, RI, USA. Center for Neurorestoration and Neurotechnology, Rehabilitation R&D Service, Department of Veterans Affairs Medical Center, Providence, RI, USA.

Published: August 2014

Objective: Action potentials and local field potentials (LFPs) recorded in primary motor cortex contain information about the direction of movement. LFPs are assumed to be more robust to signal instabilities than action potentials, which makes LFPs, along with action potentials, a promising signal source for brain-computer interface applications. Still, relatively little research has directly compared the utility of LFPs to action potentials in decoding movement direction in human motor cortex.

Approach: We conducted intracortical multi-electrode recordings in motor cortex of two persons (T2 and [S3]) as they performed a motor imagery task. We then compared the offline decoding performance of LFPs and spiking extracted from the same data recorded across a one-year period in each participant.

Main Results: We obtained offline prediction accuracy of movement direction and endpoint velocity in multiple LFP bands, with the best performance in the highest (200-400 Hz) LFP frequency band, presumably also containing low-pass filtered action potentials. Cross-frequency correlations of preferred directions and directional modulation index showed high similarity of directional information between action potential firing rates (spiking) and high frequency LFPs (70-400 Hz), and increasing disparity with lower frequency bands (0-7, 10-40 and 50-65 Hz). Spikes predicted the direction of intended movement more accurately than any individual LFP band, however combined decoding of all LFPs was statistically indistinguishable from spike-based performance. As the quality of spiking signals (i.e. signal amplitude) and the number of significantly modulated spiking units decreased, the offline decoding performance decreased 3.6[5.65]%/month (for T2 and [S3] respectively). The decrease in the number of significantly modulated LFP signals and their decoding accuracy followed a similar trend (2.4[2.85]%/month, ANCOVA, p = 0.27[0.03]).

Significance: Field potentials provided comparable offline decoding performance to unsorted spikes. Thus, LFPs may provide useful external device control using current human intracortical recording technology. (

Clinical Trial Registration Number: NCT00912041.).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4142142PMC
http://dx.doi.org/10.1088/1741-2560/11/4/046007DOI Listing

Publication Analysis

Top Keywords

action potentials
20
field potentials
12
motor cortex
12
offline decoding
12
decoding performance
12
unsorted spikes
8
local field
8
potentials
8
human motor
8
lfps
8

Similar Publications

We aim to understand whether tremor may be an intrinsic feature of juvenile myoclonic epilepsy (JME) and whether individuals with JME plus tremor experience a different disease course. Thirty-one individuals with JME plus tremor (17 females, mean age = 33.9 ± 13.

View Article and Find Full Text PDF

Background: Complexity and signal recurrence metrics obtained from body surface potential mapping (BSPM) allow quantifying atrial fibrillation (AF) substrate complexity. This study aims to correlate electrocardiographic imaging (ECGI) detected reentrant patterns with BSPM-calculated signal complexity and recurrence metrics.

Methods: BSPM signals were recorded from 28 AF patients (17 male, 11 women, 62.

View Article and Find Full Text PDF

Effects of chronic ethanol exposure on dorsal medial striatal neurons receiving convergent inputs from the orbitofrontal cortex and basolateral amygdala.

Neuropharmacology

January 2025

Department of Neuroscience; Department of Psychiatry and Behavioral Sciences, Addiction Sciences Division, Medical University of South Carolina, Charleston, SC 29425. Electronic address:

Alcohol use disorder is associated with altered function of cortical-amygdala-striatal circuits such as the orbitofrontal cortex (OFC), basolateral amygdala (BLA) and their connections to the dorsal medial striatum (DMS) shown to be involved in goal-directed actions. Using retrobead tracing, we previously reported enhanced excitability of DMS-projecting OFC neurons in mice following 3-to-7-day withdrawal from chronic intermittent ethanol (CIE) exposure. In the same animals, spiking of DMS-projecting BLA neurons was decreased at 3-days post-withdrawal followed by an increase in firing at 7- and 14-days.

View Article and Find Full Text PDF

A nanoparticle-based wireless deep brain stimulation system that reverses Parkinson's disease.

Sci Adv

January 2025

New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.

Deep brain stimulation technology enables the neural modulation with precise spatial control but requires permanent implantation of conduits. Here, we describe a photothermal wireless deep brain stimulation nanosystem capable of eliminating α-synuclein aggregates and restoring degenerated dopamine neurons in the substantia nigra to treat Parkinson's disease. This nanosystem (ATB NPs) consists of gold nanoshell, an antibody against the heat-sensitive transient receptor potential vanilloid family member 1 (TRPV1), and β-synuclein (β-syn) peptides with a near infrared-responsive linker.

View Article and Find Full Text PDF

Repeat expansions in gene in refractory chronic cough.

ERJ Open Res

January 2025

Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.

Introduction: Refractory chronic cough (RCC), persisting despite addressing contributory diagnoses, is likely underpinned by neurally mediated cough hypersensitivity. disorders are genetic neurodegenerative conditions caused by biallelic repeat expansion sequences, commonly presenting with cough, followed by neurological features including cerebellar ataxia with neuropathy and vestibular areflexia syndrome (CANVAS). The prevalence and identifying clinical characteristics of repeat-expansion disorders in patients with RCC are unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!