A novel time domain multiplexed (TDM) spatial division multiplexing (SDM) receiver which allows for the reception of >1 dual polarization mode with a single coherent receiver, and corresponding 4-port oscilloscope, is experimentally demonstrated. Received by two coherent receivers and respective 4-port oscilloscopes, a 3 mode transmission of 28GBaud QPSK, 8, 16, and 32QAM over 41.7km of few-mode fiber demonstrates the performance of the TDM-SDM receiver with respect to back-to-back. In addition, by using carrier phase estimation employing one digital phase locked loop per output, the frequency offset between the transmitter laser and local oscillator is shown to perform similar to previous work which employs 3 coherent receivers and 4-port oscilloscopes which are dedicated to the reception of each the three modes.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.22.012668DOI Listing

Publication Analysis

Top Keywords

time domain
8
domain multiplexed
8
spatial division
8
division multiplexing
8
coherent receivers
8
4-port oscilloscopes
8
multiplexed spatial
4
receiver
4
multiplexing receiver
4
receiver novel
4

Similar Publications

Correlated spin-wave generation and domain-wall oscillation in a topologically textured magnetic film.

Nat Mater

January 2025

Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, NY, USA.

Spin waves, or magnons, are essential for next-generation energy-efficient spintronics and magnonics. Yet, visualizing spin-wave dynamics at nanoscale and microwave frequencies remains a formidable challenge due to the lack of spin-sensitive, time-resolved microscopy. Here we report a breakthrough in imaging dipole-exchange spin waves in a ferromagnetic film owing to the development of laser-free ultrafast Lorentz electron microscopy, which is equipped with a microwave-mediated electron pulser for high spatiotemporal resolution.

View Article and Find Full Text PDF

As a multivariate time series, the prediction of curling trajectories is crucial for athletes to devise game strategies. However, the wide prediction range and complex data correlations present significant challenges to this task. This paper puts forward an innovative deep learning approach, CasLSTM, by introducing integrated inter-layer memory, and establishes an encoder-predictor curling trajectory forecasting model accordingly.

View Article and Find Full Text PDF

UAV selection for high-speed train communication using OTFS modulation.

Sci Rep

January 2025

Computational Learning Theory Team, RIKEN-Advanced Intelligence Project, Fukuoka, 819-0395, Japan.

Providing continuous wireless connectivity for high-speed trains (HSTs) is challenging due to their high speeds, making installing numerous ground base stations (BSs) along the HST route an expensive solution, particularly in rural and wilderness areas. This paper proposes using multiple unmanned aerial vehicles (UAVs) to deliver high data rate wireless connectivity for HSTs, taking advantage of their ability to fly, hover, and maneuver at low altitudes. However, autonomously selecting the optimal UAV by the HST is challenging.

View Article and Find Full Text PDF

Background: CAR T-cell therapy (CAR-T) is leading to durable responses in patients with cancer but there is concern that cytokine release syndrome (CRS) and neurotoxicity may impact survivors' cognitive function. We assessed long-term cognitive function in CAR-T recipients and examine factors associated with change in cognition over time.

Methods: We assessed perceived cognition (Functional Assessment of Cancer Therapy - Cognition) and neurocognitive performance (standardized neuropsychological battery) in adult patients prior to receiving CAR-T and at 6 month follow-up.

View Article and Find Full Text PDF

Background: Investigators and funding organizations desire knowledge on topics and trends in publicly funded research but current efforts for manual categorization have been limited in breadth and depth of understanding.

Purpose: We present a semi-automated analysis of 21 years of R-type National Cancer Institute (NCI) grants to departments of radiation oncology and radiology using natural language processing (NLP).

Methods: We selected all non-education R-type NCI grants from 2000 to 2020 awarded to departments of radiation oncology/radiology with affiliated schools of medicine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!