Switchable and tunable chiral metamaterial response is numerically demonstrated here in different uniaxial chiral metamaterial structures operating in the THz regime. The structures are based on the bi-layer conductor design and the tunable/switchable response is achieved by replacing parts of the metallic components of the structures by photoconducting Si, which can be transformed from an insulating to an almost conducting state through photoexcitation, achievable under external optical pumping. All the structures proposed and discussed here exhibit frequency regions with giant tunable circular dichroism, as well as regions with giant tunable optical activity, showing unique potential in the achievement of active THz polarization components, like tunable polarizers and polarization filters.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.22.012149DOI Listing

Publication Analysis

Top Keywords

chiral metamaterial
8
regions giant
8
giant tunable
8
optically controllable
4
controllable thz
4
thz chiral
4
chiral metamaterials
4
metamaterials switchable
4
tunable
4
switchable tunable
4

Similar Publications

In this paper, an optically transparent dual-band microwave chiral metamaterial based on indium tin oxide (ITO) strips is proposed. The rotation angle and length of the three ITO strips on the structural layer can be varied to generate two independent frequency bands in the circular dichroism (CD) spectrum. The maximum CD value is 0.

View Article and Find Full Text PDF

Chiral and Quantum Plasmonic Sensors: New Frontiers in Selective and Ultra-Sensitive Sensing.

Small

January 2025

Department of Chemistry, Dr. Vishwanath Karad MIT World Peace University, Survey No, 124, Paud Rd, Kothrud, Pune, Maharashtra, 411038, India.

Surface Plasmon Polaritons (SPPs) and Localized Surface Plasmon Resonances (LSPRs) are fundamental phenomena in plasmonics that enable the confinement of electromagnetic waves beyond the diffraction limit. This confinement results in a significant enhancement of the electric field, making this phenomenon particularly beneficial for sensitive detection applications. However, conventional plasmonic sensors face several challenges, notably their difficulty in distinguishing chiral molecules, which are vital in drug development.

View Article and Find Full Text PDF

The field of chiral nanoparticles is rapidly expanding, yet measuring the chirality of single nano-objects remains a challenging endeavor. Here, we report a technique to detect chiro-optical effects in single plasmonic nanoparticles by means of phase-sensitive polarization-resolved four-wave mixing interferometric microscopy. Beyond conventional circular dichroism, the method is sensitive to the particle polarizability, in amplitude and phase.

View Article and Find Full Text PDF

On-Chip Elastic Wave Manipulations Based on Synthetic Dimension.

Phys Rev Lett

December 2024

Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China.

Article Synopsis
  • Researchers are focusing on manipulating elastic waves in lower-dimensional mechanical metamaterials to design miniaturized elastic devices, but controlling these waves in higher dimensions is challenging.
  • This study introduces a structural parameter to explore on-chip Weyl physics in a silicon-on-insulator system, creating an in-plane pseudomagnetic field that facilitates robust energy transport through chiral Landau levels.
  • Unique boundary states are observed near the corners, differing from traditional topological states, and the use of synthetic dimensions allows for advanced multidimensional elastic wave manipulation and exploration of higher-dimensional physics on integrated platforms.
View Article and Find Full Text PDF

Gigantic Tellegen responses in metamaterials.

Nat Commun

January 2025

New Cornerstone Science Laboratory, Department of Physics, University of Hong Kong, 999077, Hong Kong, China.

Tellegen medium has long been a topic of debate, with its existence being contested over several decades. It was first proposed by Tellegen in 1948 and is characterized by a real-valued cross coupling between electric and magnetic responses, distinguishing it from the well-known chiral medium that has imaginary coupling coefficients. Significantly, Tellegen responses are closely linked to axion dynamics, an extensively studied subject in condensed matter physics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!