In this paper, we propose a novel approach to simultaneously receive multi-band 100-Gb/s direct-detection optical signal with only one polarization and one conventional 40-GHz photodiode. The modulation format of orthogonal frequency-division multiplexing based on offset quadrature amplitude modulation (OFDM/OQAM) is selected to provide signal spectrum with high side-lobe suppression ratio, which can effectively reduce the electrical sub-band frequency interference. The whole 100-Gb/s OFDM/OQAM signal is comprised of 6 sub-bands with 16- and 32-QAM formats loading. Only one guard band is required to accommodate the overlapped 6-band signal-to-signal beat interference (SSBI). The receiver bandwidth is mainly limited by the digital storage oscilloscope (DSO) of 33 GHz. The transmission distance over standard single mode fiber (SSMF) is up to 320 km.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.22.012079DOI Listing

Publication Analysis

Top Keywords

transmission 100-gb/s
4
100-gb/s ddo-ofdm/oqam
4
ddo-ofdm/oqam 320-km
4
320-km ssmf
4
ssmf single
4
single photodiode
4
photodiode paper
4
paper propose
4
propose novel
4
novel approach
4

Similar Publications

The surging growth in data traffic has necessitated the development of higher-speed, lower-latency intensity modulation and direct detection (IM/DD) passive optical networks (PONs) with higher power budgets. To address the inherent limitations of traditional silica-based solid-core fibers, anti-resonant hollow-core fibers have garnered significant attention from both academia and industry. In this Letter, we present an experimental demonstration of 100 Gb/s PAM-4 IM/DD PON transmission over a 20 km anti-resonant hollow-core fiber in the C band, utilizing low-complexity digital signal processing (DSP).

View Article and Find Full Text PDF

The use of Alamouti-coded polarization-time block code (A-PTBC) in combination with a simple single polarization coherent receiver enables phase-diverse coherent detection without any optical polarization tracking. However, applying this technique to high-speed single-carrier systems is not straightforward, as it requires specialized digital signal processing (DSP) algorithms for data recovery, which increases DSP complexity. In this paper, we propose a novel Alamouti-coded coherent algorithm designed to significantly reduce the complexity of the receiver DSP for data recovery.

View Article and Find Full Text PDF

To monitor the health of the fiber network and its ambient environment in densely populated access/metro network areas, in this Letter, an endogenous distributed acoustic sensing (DAS) has been proposed and achieved in a coherent digital subcarrier multiplexing (DSCM) system. Rather than specially allocating a sensing probe in general integrated communication and sensing schemes, the fractional Fourier transformed (FrFT) training sequence (TS) designated for time/frequency synchronization in DSCM coherent communications has been repurposed for sensing. While achieving excellent synchronization performance of communication, the FrFT-based TS can also be concurrently utilized to perform distributed vibration sensing.

View Article and Find Full Text PDF

In recent years, the transmission capacity of chaotic secure communications has been greatly expanded by combining coherent detection and multi-dimensional multiplexing. However, demonstrations over 1000 km fiber are yet to be further explored. In this paper, we propose a coherent optical secure transmission system based on analog-digital hybrid chaos.

View Article and Find Full Text PDF

Enabling communication networks with sensing functionality has attracted significant interest lately. The digital subcarrier multiplexing (DSCM) technology is widely promoted in short-reach scenarios for its inherent flexibility of fine-tuning the spectrum. Its compatibility with large-scale as-deployed coherent architectures makes it particularly suited for cost-sensitive integrated sensing and communication applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!