2-dimensional simulations of high-contrast gratings (HCGs) of finite size are carried out, targeting at their applications in vertical-cavity surface-emitting lasers (VCSELs). Finite HCGs show a very different behavior from infinite grating ones. The reflectivity of a finite HCG strongly depends on the HCG size and the source size. Our simulation results predict finite reflectivity and transmission values, well consistent with reported experimental results. The band of high reflectivity (>99.5%) of finite HCGs is less broad as compared to the infinite case. Losses into a guided mode excited in the HCG plane are identified as being at the root. This guided mode is excited due to the nonzero angular components in the finite source size, and greatly enhances the transmission and the light leakage from the slab. In addition, the simulation results show that the details of the finite HCG can shape the output beam, whilst a Gaussian-like reflected wave is typically achieved. Our simulations can explain the current discrepancies between numerical predictions of reflectivities approaching 100% and working HCG-VCSELs showing finite reflectivities and nearly Gaussian-like output. Consequently, our analysis of finite HCGs is indispensable for HCG-VCSEL design.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.22.011804 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!