We demonstrated an electrically tunable optical image system with separable focus function and zoom function based on three tunable focusing composite liquid crystal (LC) lenses. One LC lens in charge of the focus function helps to maintain the formed image at the same position and the other two LC lenses in charge of zoom function assist to continuously form an image at image sensor with tunable magnification of image size. The detail optical mechanism is investigated and the concept is demonstrated experimentally. The magnifications of the images can be switched continuously for the target in a range between 10 cm and 100 cm. The optical zoom ratio of this system maintains a constant~6.5:1 independent of the object distance. This study provides not only a guideline to design the image system with an electrically optical zoom, but also provide an experimental process to show how to operate the tunable focusing lenses in such an image system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.22.011427 | DOI Listing |
Sci Adv
January 2025
Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea.
Optical resolution photoacoustic imaging of uneven samples without z-scanning is transformative for the fast analysis and diagnosis of diseases. However, current approaches to elongate the depth of field (DOF) typically imply cumbersome postprocessing procedures, bulky optical element ensembles, or substantial excitation beam side lobes. Metasurface technology allows for the phase modulation of light and the miniaturization of imaging systems to wavelength-size thickness.
View Article and Find Full Text PDFSci Adv
January 2025
Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China.
Intracranial optical imaging of glioblastoma (GBM) is challenging due to the scarcity of effective probes with blood-brain barrier (BBB) permeability and sufficient imaging depth. Herein, we describe a rational strategy for designing optical probes crossing the BBB based on an electron donor-π-acceptor system to adjust the lipid/water partition coefficient and molecular weight of probes. The amphiphilic hemicyanine dye (namely, IVTPO), which exhibits remarkable optical properties and effective BBB permeability, is chosen as an efficient fluorescence/photoacoustic probe for in vivo real-time imaging of orthotopic GBM with high resolution through the intact skull.
View Article and Find Full Text PDFSci Adv
January 2025
Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
Placebo analgesia is caused by inactive treatment, implicating endogenous brain function involvement. However, the neurobiological basis remains unclear. In this study, we found that μ-opioid signals in the medial prefrontal cortex (mPFC) activate the descending pain inhibitory system to initiate placebo analgesia in neuropathic pain rats.
View Article and Find Full Text PDFBrain
January 2025
U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Neuropresage Team; INSERM, University of Caen Normandy; GIP Cyceron, 14000 Caen, France.
Curing Alzheimer's disease remains hampered by an incomplete understanding of its pathophysiology and progression. Exploring dysfunction in medial temporal lobe networks, particularly the anterior-temporal (AT) and posterior-medial (PM) systems, may provide key insights, as these networks exhibit functional connectivity alterations along the entire Alzheimer's continuum, potentially influencing disease propagation. However, the specific changes in each network and their clinical relevance across stages are not yet fully understood.
View Article and Find Full Text PDFJ Am Acad Orthop Surg
November 2024
From the Department of Hand and Reconstructive Microsurgery, National University Health System, Singapore (Lee), the Department of Orthopedic Surgery (Sammarco), the Department of Neurosurgery (Spinner), Mayo Clinic, Rochester, MN, and the Division of Hand and Microvascular Surgery, Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN (Shin).
Painful neuromas are a complex clinical condition that results in notable disability and functional impairment after injury to a peripheral nerve. When regenerating axons lack a distal target, they form a stump neuroma. Up to 60% of neuromas are painful because of mechanical sensitivity and crosstalk between nerve fibers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!