The search toward the establishment of novel serological tests for the diagnosis of leishmaniasis and proper differential diagnosis may represent one alternative to the invasive parasitological methods currently used to identify infected individuals. In the present work, we investigated the potential use of recombinant peroxidoxin (rPeroxidoxin) of Leishmania (Viannia) braziliensis as a potential antigen for the immunodiagnosis of human tegumentary (TL) and visceral leishmaniasis (VL) and canine visceral leishmaniasis (CVL). Linear B-cell epitope mapping was performed to identify polymorphic epitopes when comparing orthologous sequences present in Trypanosoma cruzi, the agent for Chagas disease (CD), and the Homo sapiens and Canis familiaris hosts. The serological assay (ELISA) demonstrated that TL, VL and CVL individuals showed high levels of antibodies against rPeroxidoxin, allowing identification of infected ones with considerable sensitivity and great ability to discriminate (specificity) between non-infected and CD individuals (98.46% and 100%; 98.18% and 95.71%; 95.79% and 100%, respectively). An rPeroxidoxin ELISA also showed a greater ability to discriminate between vaccinated and infected animals, which is an important requirement for the public campaign control of CVL. A depletion ELISA assay using soluble peptides of this B-cell epitope confirmed the recognition of these sites only by Leishmania-infected individuals. Moreover, this work identifies two antigenic polymorphic linear B-cell epitopes of L. braziliensis. Specific recognition of TL and VL patients was confirmed by significantly decreased IgG reactivity against rPeroxidoxin after depletion of peptide-1- and peptide-2-specific antibodies (peptide 1: reduced by 32%, 42% and 5% for CL, ML and VL, respectively; peptide-2: reduced by 24%, 22% and 13% for CL, ML and VL, respectively) and only peptide-2 for CVL (reduced 9%). Overall, rPeroxidoxin may be a potential antigen for the immunodiagnosis of TL, VL or CVL, as it has a higher agreement with parasitological assays and is better than other reference tests that use soluble Leishmania antigens for diagnosing CVL in Brazil (EIE-LVC, Bio-manguinhos, FIOCRUZ).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4055673PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0099216PLOS

Publication Analysis

Top Keywords

visceral leishmaniasis
12
b-cell epitopes
8
leishmania viannia
8
viannia braziliensis
8
braziliensis potential
8
tegumentary visceral
8
individuals work
8
potential antigen
8
antigen immunodiagnosis
8
linear b-cell
8

Similar Publications

Background: Visceral leishmaniosis (VL) is the most severe form of human leishmaniosis, with an estimated 95% case fatality if left untreated. Dogs act as peridomestic reservoir hosts for the protozoan parasite Leishmania infantum, a causative agent for human leishmaniosis, endemic throughout the Mediterranean basin. To assure consistent and accurate surveillance of canine infection and prevent transmission to people, consistent diagnosis of canine L.

View Article and Find Full Text PDF

Leishmania is a genus of the family Trypanosomatidae that unites obligatory parasitic flagellates causing a variety of vector-borne diseases collectively called leishmaniasis. The symptoms range from relatively innocuous skin lesions to complete failures of visceral organs. The disease is exacerbated if a parasite harbors Leishmania RNA viruses (LRVs) of the family Pseudototiviridae.

View Article and Find Full Text PDF

In vitro and in silico approaches manifest the anti-leishmanial activity of wild edible mushroom .

In Silico Pharmacol

December 2024

Laboratory of Cell and Molecular Biology, Department of Botany, Centre of Advanced Study, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019 India.

Visceral Leishmaniasis, caused by is the second most deadly parasitic disease, causing over 65,000 deaths annually. Synthetic drugs available in the market, to combat this disease, have numerous side effects. In this backdrop, we aim to find safer antileishmanial alternatives with minimal side effects from mushrooms, which harbour various secondary metabolites with promising efficacy.

View Article and Find Full Text PDF

The analysis of the volatile compounds released by biological samples represents a promising approach for the non-invasive diagnosis of a disease. The present study, focused on a population of dogs infected with canine leishmaniasis, aimed to decipher the volatolomic profile associated with this disease in dogs, which represent the main animal reservoir for Leishmania pathogen transmission to humans. The volatiles emitted by the breath and hair of dogs were analysed employing the gas chromatography-mass spectrometry (GC-MS) technique.

View Article and Find Full Text PDF

Unlabelled: Visceral leishmaniasis (VL), caused by , remains challenging to treat due to severe side effects and increasing drug resistance associated with current chemotherapies. Our study investigates the anti-leishmanial potential of from Uttarakhand, India, with extracts prepared from leaves and stems using ethanol and hexane. Advanced GC-MS analysis identified over 100 bioactive compounds, which were screened using molecular docking to assess their binding to LdHEL-67, a DDX3-DEAD box RNA helicase of donovani.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!