Glucose is a major substrate for milk synthesis and is taken up from the blood by mammary epithelial cells (MECs) through facilitative glucose transporters (GLUTs). The expression levels of GLUT1 and GLUT8 are upregulated dramatically in the mammary gland from late pregnancy through early lactation stages. This study aimed to test the hypothesis that this increase in GLUT1 and GLUT8 expression involves hypoxia signaling through hypoxia inducible factor-1α (HIF-1α) in MECs. Mouse mammary glands showed significantly more hypoxia in midpregnancy through early lactation stages compared with in the virgin stage, as stained by the hypoxia marker pimonidazole HCl. Treatment with hypoxia (2% O2) significantly stimulated glucose uptake and GLUT1 mRNA and protein expression, but decreased GLUT8 mRNA expression in bovine MECs. In MECs, hypoxia also increased the levels of HIF-1α protein in the nuclei, and siRNA against HIF-1α completely abolished the hypoxia-induced upregulation of GLUT1, while having no effect on GLUT8 expression. A 5'-RCGTG-3' core HIF-1α binding sequence was identified 3.7 kb upstream of the bovine GLUT1 gene, and HIF-1α binding to this site was increased during hypoxia. In conclusion, the mammary glands in pregnant and lactating animals are hypoxic, and MECs respond to this hypoxia by increasing GLUT1 expression and glucose uptake through a HIF-1α-dependent mechanism. GLUT8 expression, however, is negatively regulated by hypoxia through a HIF-1α-independent pathway. The regulation of glucose transporters through hypoxia-mediated gene transcription in the mammary gland may provide an important physiological mechanism for MECs to meet the metabolic demands of mammary development and lactation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpregu.00093.2014 | DOI Listing |
Anticancer Res
September 2024
Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, U.S.A.;
Background/aim: Over-expression of glucose transporters (GLUTs), membrane proteins that facilitate glucose transport, has been implicated in cutaneous melanomas. Our prior studies have demonstrated increased expression of GLUT1 and GLUT3 in melanomas and their association with poorer prognosis. This study aimed to investigate the expression of GLUT isoforms 4 and 8 in melanocytic lesions, examine the co-expression status of multiple GLUTs, and evaluate their prognostic significance.
View Article and Find Full Text PDFJ Dairy Sci
October 2024
School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061. Electronic address:
This study aimed to evaluate the effect of heat stress on mammary epithelial cell (MEC) losses into milk, secretory mammary tissue structure, and mammary epithelial cell activity. Sixteen multiparous Holstein cows (632 ± 12 kg BW) approximately 100 DIM housed in climate-controlled rooms were paired by BW and randomly allocated to one of 2 treatments, heat stress (HS) or pair-feeding thermoneutral (PFTN) using 2 cohorts. Each cohort was subjected to 2 periods of 4 d each.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Res
April 2024
Oral Medicine Research Center, Fukuoka Dental College, Fukuoka 814-0193, Japan. Electronic address:
Recent findings suggest that uncarboxylated osteocalcin (GluOC) promotes glucose and lipid metabolism via its putative receptor GPRC6A; however, its direct effect on adipocytes remains elusive. In this study, we elucidated the effects of GluOC on adipocytes, with an emphasis on the role of cell adhesion molecules. We determined that GluOC promoted the expression of adipocyte adhesion molecule (ACAM) and its transcription factor Krüppel-like factor 4 and enhanced the cortical actin filament assembly, which ameliorated lipid droplet hypertrophy.
View Article and Find Full Text PDFCureus
September 2023
Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND.
Oral squamous cell carcinoma (OSCC) is a malignancy of the oral cavity with poor prognosis. Dysregulation in glycolytic pathways involving glucose transporters (GLUT) has been implicated in poor prognosis. Furthermore, GLUT expression in cancer cells is regulated by several miRNAs.
View Article and Find Full Text PDFPLoS One
May 2023
Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, United States of America.
Athletic conditioning can increase the capacity for insulin-stimulated skeletal muscle glucose uptake through increased sarcolemmal expression of GLUT4 and potentially additional novel glucose transporters. We used a canine model that has previously demonstrated conditioning-induced increases in basal, insulin- and contraction-stimulated glucose uptake to identify whether expression of glucose transporters other than GLUT4 was upregulated by athletic conditioning. Skeletal muscle biopsies were obtained from 12 adult Alaskan Husky racing sled dogs before and after a full season of conditioning and racing, and homogenates from those biopsies were assayed for expression of GLUT1, GLUT3, GLUT4, GLUT6, GLUT8, and GLUT12 using western blots.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!