Studies reporting spine kinematics during cervical manipulation are usually related to continuous global head-trunk motion or discrete angular displacements for pre-positioning. To date, segmental data analyzing continuous kinematics of cervical manipulation is lacking. The objective of this study was to investigate upper cervical spine (UCS) manipulation in vitro. This paper reports an inter- and intra-rater reliability analysis of kinematics during high velocity low amplitude manipulation of the UCS. Integration of kinematics into specific-subject 3D models has been processed as well for providing anatomical motion representation during thrust manipulation. Three unembalmed specimens were included in the study. Restricted dissection was realized to attach technical clusters to each bone of interest (skull, C1-C4 and sternum). During manipulation, bone motion data was computed using an optoelectronic system. The reliability of manipulation kinematics was assessed for three experimented practitioners performing two trials of 3 repetitions on two separate days. During UCS manipulation, average global head-trunk motion ROM (±SD) were 14 ± 5°, 35 ± 7° and 14 ± 8° for lateral bending, axial rotation and flexion-extension, respectively. For regional ROM (C0-C2), amplitudes were 10 ± 5°, 30 ± 5° and 16 ± 4° for the same respective motions. Concerning the reliability, mean RMS ranged from 1° to 4° and from 3° to 6° for intra- and inter-rater comparisons, respectively. The present results confirm the limited angular displacement during manipulation either for global head-trunk or for UCS motion components, especially for axial rotation. Additionally, kinematics variability was low confirming intra- and inter-practitioners consistency of UCS manipulation achievement.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.math.2014.04.017 | DOI Listing |
Sci Rep
January 2025
School of Automobile and Transportation, Xihua University, Chengdu, 610039, China.
Autonomous driving technology has led to an increasing preference for rearward seating postures. However, current restraint systems exhibit significant shortcomings in protecting reclined occupants. In this paper, based on the existing restraint system components, various restraint strategies were configured to enhance the protection for reclined occupants.
View Article and Find Full Text PDFShoulder Elbow
January 2025
Health Sciences Department, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
Objective: This study aimed to assess reachable workspace (RWS) in patients post-osteosynthesis of shoulder, elbow, or wrist fractures and explore correlations with self-reported function and kinesiophobia.
Design: An observational case-control study compared patients with fractures to a control group, utilizing questionnaires and 3D kinematic data.
Participants: The sample included 66 individuals who had undergone osteosynthesis: 21 with shoulder fractures, 10 with elbow fractures, and 22 with wrist fractures.
Calcif Tissue Int
January 2025
Department of Bioengineering, Temple University, 1947 N. 12th St, Philadelphia, PA, 19122, USA.
Bone mechanical function is determined by multiple factors, some of which are still being elucidated. Here, we present a multivariate analysis of the role of bone tissue composition in the proximal femur stiffness of cadaver bones (n = 12, age 44-93). Stiffness was assessed by testing under loading conditions simulating a sideways fall onto the hip.
View Article and Find Full Text PDFVision (Basel)
January 2025
Centre Gilles Gaston Granger, UMR 7304 Centre National de la Recherche Scientifique, Aix Marseille Université, 13621 Aix-en-Provence, France.
The appearance of an object triggers an orienting gaze movement toward its location. The movement consists of a rapid rotation of the eyes, the saccade, which is accompanied by a head rotation if the target eccentricity exceeds the oculomotor range and by a slow eye movement if the target moves. Completing a previous report, we explain the numerous points that lead to questioning the validity of a one-to-one correspondence relation between measured physical values of gaze or head orientation and neuronal activity.
View Article and Find Full Text PDFJ Orthop Surg Res
January 2025
Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg- Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
Background: In atlantoaxial instabilities, posterior C1/C2 fusion using lateral mass screws (LMS) or pedicle screws (PS) in a mono- or bicortical position in the atlas is a typical treatment. The bone microstructure and positioning of the screw trajectories appear to be of significant relevance for stability.
Purpose: The aim of this study was a comparative analysis of the mechanical durability of screw fixation concerning microstructural characteristics of the trajectories of LMS and PS in mono- and bicortical position.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!